
 M0020965

Motion controller

SMC200-A，SMC200-B

Software manual

Table of Contents

1

1. Preface ... 9

1.1. Introduction ... 9

1.2. Precautions related to these Instructions .. 10

1.3. Documentation for further reading .. 11

1.4. About CODESYS .. 11

2. Safety notes ... 13

2.1. Representation .. 13

3. Installation of development software .. 15

3.1. PC environment .. 15

3.2. Run the installer .. 15

3.3. When it does not work .. 22

4. SANMOTION C Software Tool 2.0.0 ... 23

4.1. What is SANMOTION C Software Tool 2.0.0 ... 23

4.2. Template file ... 23

4.3. Screen structure .. 24

4.4. Project structure .. 25

4.5. Device ... 26

4.5.1. Communication Settings .. 27

4.5.2. File ... 29

4.5.3. PLC Settings .. 30

4.5.4. Device Parameters .. 31

4.5.5. Device I/O Mapping ... 33

4.6. POU .. 34

4.6.1. Program（PRG） .. 34

4.6.2. Function block（FB） .. 34

4.6.3. Function（FUN） .. 34

4.7. Task .. 35

4.8. Variable ... 37

4.8.1. Data type .. 37

4.8.1.1. Standard data type .. 37

4.8.1.2. User-defined data type .. 38

4.8.2. Declarative syntax .. 38

4.8.3. Initial value setting ... 39

4.8.4. Input Assistant function .. 40

4.9. Programming language ... 42

4.9.1. LD (Ladder Diagram) ... 42

4.9.2. IL (Instruction List) ... 42

4.9.3. FBD (Function Block Diagram) .. 42

4.9.4. CFC (Continuous Function Chart).. 43

4.9.5. ST (Structured Text)... 43

4.9.6. SFC (Sequential Function Chart) ... 43

4.9.7. Program language features ... 44

4.10. Add device configuration file ... 45

4.11. Library ... 47

4.11.1. Add library .. 47

4.11.2. Create library .. 48

4.11.3. Install library ... 51

4.11.4. Use library .. 52

4.12. Application transfer ... 53

4.12.1. Transfer from the integrated development environment via the network 53

Table of Contents

2

4.12.2. Source code downloads and upload ... 55

4.12.2.1. Source download(Development PC → Controller) 55

4.12.2.2. Source upload(Controller → Development PC) ... 56

4.13. Debug function .. 57

4.13.1. Monitoring ... 57

4.13.2. Breakpoint ... 59

4.13.3. Forcing and Writing Variables in online .. 60

4.13.4. Flow Control .. 60

4.13.5. Trace ... 61

4.13.6. Simulation ... 66

5. Settings in the Web application ... 67

5.1. Web application ... 67

6. Communication function .. 69

6.1. EtherCAT .. 69

6.1.1. Supported operation mode ... 70

6.1.2. Object Dictionary .. 71

6.1.3. Process Data Object(PDO) .. 71

6.1.4. Service Data Object(SDO) ... 72

6.1.5. EtherCAT device editor .. 73

6.1.5.1. EtherCAT master setting ... 73

6.1.5.2. EtherCAT slave setting .. 74

6.1.6. Function block for SDO communication ... 79

6.1.6.1. ETC_CO_SdoRead ... 79

6.1.6.2. ETC_CO_SdoWrite ... 80

6.1.7. PDO communication .. 82

6.1.7.1. Assign variables .. 82

6.1.7.2. Use variables ... 83

6.2. EtherNet/IP .. 84

6.2.1. Basic specifications .. 84

6.2.2. Adapter setting procedure .. 85

6.2.2.1. Adapter addition procedure ... 85

6.2.2.2. Ethernet settings .. 87

6.2.2.3. Adapter settings ... 88

6.2.2.4. Module settings ... 89

6.2.3. CIP object ... 90

6.2.3.1. Identity Object (Class Code : 0x01) ... 90

6.2.3.2. TCP/IP Interface Object (Class Code : 0xF5) .. 91

6.2.3.3. Assembly Object (Class Code : 0x04) ... 92

6.2.4. Scanner setting procedure ... 93

6.2.4.1. Add scanner procedure ... 93

6.2.4.2. Scanner settings .. 94

6.2.4.3. Add remote adapter ... 95

6.2.4.4. Remote Adapter Configuration .. 96

6.2.5. Explicit message communication function block .. 99

6.2.5.1. Apply_Attributes .. 99

6.2.5.2. NOP ... 100

6.2.5.3. Reset ... 100

6.2.5.4. Start ... 101

6.2.5.5. Stop ... 101

6.2.5.6. Get_Attributes_All .. 102

6.2.5.7. Get_Attribute_Single ... 103

6.2.5.8. Set_Attributes_All .. 104

6.2.5.9. Set_Attribute_Single .. 105

Table of Contents

3

6.2.5.10. Generic_Service .. 106

6.3. OPC UA .. 107

6.4. File sharing service ... 109

6.4.1. Enable server from web application ... 110

6.4.2. Directory structure of user area.. 110

6.4.3. Connection method .. 111

6.4.3.1. FTP .. 111

6.4.3.2. Samba .. 111

6.5. Wireless communication ... 112

7. Control programming.. 113

7.1. I/O control programming ... 113

7.1.1. I/O assignment ... 113

7.1.2. Creation of I/O control program ... 114

7.2. Manual drive program ... 116

7.2.1. Sample program summary ... 116

7.2.2. Configuration .. 117

7.2.2.1. Add slave ... 117

7.2.2.2. Add axis ... 119

7.2.2.3. Axis settings .. 120

7.2.2.4. The state diagram ... 123

7.2.3. Sample program .. 124

7.3. Manual drive program by visualization .. 129

7.3.1. Sample program summary ... 129

7.3.2. Configuration .. 130

7.3.3. Sample program .. 130

7.3.4. Creation of visualization screen ... 131

7.3.4.1. Add a visualization .. 131

7.3.4.2. Creation of monitor section of visualization ... 132

7.3.4.3. Creation of control section of visualization .. 134

7.3.5. Web Visualization .. 137

7.4. Single axis control program .. 139

7.4.1. Sample program summary ... 139

7.4.2. Configuration .. 139

7.4.2.1. I/O setting .. 139

7.4.2.2. Axis setting .. 140

7.4.3. Sample program .. 140

7.4.4. Operation check by trace ... 142

7.5. PTP control program ... 143

7.5.1. Sample program summary ... 143

7.5.2. Configuration .. 144

7.5.2.1. I / O setting .. 144

7.5.2.2. Add PTP control axis ... 144

7.5.2.3. Axis setting for PTP control ... 145

7.5.3. Sample program .. 146

7.5.4. Operation check by trace ... 149

7.6. Infinite rotation axis control program ... 150

7.6.1. Precautions for infinite rotation axis control ... 150

7.6.2. Sample program summary ... 152

7.6.3. Configuration .. 153

7.6.3.1. I/O setting .. 153

7.6.3.2. Axis setting .. 153

7.6.3.3. Persistent variables setting ... 153

7.6.4. Sample program .. 154

7.6.5. Operation check by trace ... 155

Table of Contents

4

7.7. Synchronous Motion Control ... 156

7.7.1. Electronic gear ... 157

7.7.1.1. Sample program summary .. 157

7.7.1.2. Sequence .. 157

7.7.1.3. Configuration ... 158

7.7.1.4. Sample program .. 159

7.7.1.5. Operation check by trace ... 161

7.7.2. Electronic cam .. 162

7.7.2.1. Sample program summary .. 162

7.7.2.2. Sequence .. 163

7.7.2.3. Configuration ... 164

7.7.2.4. Create a cam table .. 165

7.7.2.5. Sample program .. 167

7.7.2.6. Operation check by trace ... 169

7.8. CNC control program .. 170

7.8.1. Sample program summary ... 170

7.8.2. CNC Editor ... 171

7.8.2.1. Add and edit CNC program (Manually) ... 171

7.8.2.2. Edit CNC program (Import from DXF file) .. 175

7.8.3. Configuration .. 177

7.8.3.1. I/O Mapping ... 177

7.8.3.2. EtherCAT master setting ... 177

7.8.3.3. Axis setting .. 178

7.8.4. Sample program ... 179

7.8.5. Operation check by visualization .. 185

7.8.6. Operation check by trace ... 186

7.9. File control program .. 188

7.9.1. Access path .. 188

7.9.2. String literal .. 188

7.9.3. Sample program summary ... 189

7.9.4. Sample program ... 190

7.9.4.1. Create log output function ... 190

7.9.4.2. Log output function usage example ... 191

7.10. Serial control program ... 192

7.10.1. Sample program summary .. 193

7.10.2. Sample program ... 193

7.11. Socket control program ... 195

7.11.1. Socket type ... 195

7.11.2. TCP communication .. 196

7.11.3. UDP communication ... 197

7.11.4. Sample program summary .. 198

7.11.5. Sample program ... 198

7.12. Camera control program ... 199

7.12.1. Specification .. 199

7.12.2. Function block ... 200

7.12.2.1. ImageSave .. 200

7.12.2.2. ImagesSaveGoingBackInTime .. 200

7.12.2.3. ImagesSaveTriggerPrePost... 201

7.12.2.4. Error list ... 201

7.12.3. Visualization Objects ... 202

7.12.3.1. VisuStreamer ... 202

7.12.3.2. VisuDispImage .. 203

7.12.4. Sample program summary .. 204

7.12.5. Sample program ... 204

7.12.6. Operation check .. 205

7.13. Mail sending program .. 206

Table of Contents

5

7.13.1. Email settings via web app ... 206

7.13.2. Function block .. 208

7.13.2.1. Send_Mail ... 208

7.13.2.2. SM_Alarm_SendMail .. 209

7.13.2.3. SML_Alarm_SendMail .. 210

7.13.2.4. Error list .. 211

7.13.3. Sample program summary ... 211

7.13.4. Sample program ... 212

7.13.5. Operation check ... 213

7.14. 1-Wire communication program .. 214

7.14.1. Specification ... 214

7.14.2. Function block .. 215

7.14.2.1. GetList ... 215

7.14.2.2. GeneralCom .. 216

7.14.2.3. Error list ... 216

7.14.3. List information structure .. 217

7.14.3.1. DeviceList (STRUCT) .. 217

7.14.3.2. DeviceID (STRUCT) .. 217

7.14.3.3. DeviceType (ENUM) ... 218

7.14.3.4. CommonData (STRUCT) .. 218

7.14.3.5. DeviceStatus (ENUM) ... 218

7.14.3.6. UniqueData (UNION) .. 218

7.14.3.7. U_General (STRUCT) ... 218

7.14.3.8. U_9CT1_T (STRUCT) ... 219

7.14.3.9. U_9CT1_P (STRUCT)... 219

7.14.3.10. TimeStamp (STRUCT) .. 219

7.14.3.11. GeneralCommandData (STRUCT) ... 219

7.14.4. Sample program summary ... 220

7.14.5. Sample program ... 220

7.14.6. Operation check ... 221

7.15. MQTT communication program .. 222

7.15.1. Specification ... 223

7.15.2. Certificate registration ... 224

7.15.3. Function block .. 225

7.15.3.1. CONNECT .. 225

7.15.3.2. PUBLISH ... 226

7.15.3.3. SUBSCRIBE ... 227

7.15.3.4. UNSUBSCRIBE .. 227

7.15.3.5. SERVER_REF .. 228

7.15.3.6. Error list ... 229

7.15.4. Sample program summary ... 230

7.15.5. Sample program ... 230

7.15.6. Operation chek ... 231

8. Limitations ... 233

8.1. For RTC Setting .. 233

8.2. Regarding homing ... 233

8.2.1. RS2 series (Model Number：RS2*****K**) .. 233

8.2.2. Homing of SANMOTION EtherCAT slave .. 233

8.2.3. Cancellation of MC_Home_SML .. 233

8.3. Regarding visualization ... 234

8.3.1. Antialiasing settings ... 234

8.3.2. Regarding ActiveX elements .. 234

8.4. Regarding retain variables .. 234

8.5. Invert direction parameter of the SML axis ... 234

Table of Contents

6

8.6. Ethernet communication after startup ... 234

9. Appendix .. 235

9.1. Time zone list .. 235

9.2. Library for motion Control .. 238

9.2.1. Function block for single axis control ... 238

9.2.1.1. MC_Power ... 238

9.2.1.2. MC_Reset .. 239

9.2.1.3. MC_Home ... 239

9.2.1.4. MC_Stop .. 240

9.2.1.5. MC_Halt ... 240

9.2.1.6. MC_MoveAbsolute .. 241

9.2.1.7. MC_MoveRelative ... 242

9.2.1.8. MC_MoveAdditive ... 243

9.2.1.9. MC_MoveVelocity .. 244

9.2.1.10. MC_Jog ... 245

9.2.1.11. SanHome ... 246

9.2.2. PTP control function block .. 247

9.2.2.1. MC_Power_SML ... 247

9.2.2.2. MC_Reset_SML .. 248

9.2.2.3. MC_Home_SML .. 249

9.2.2.4. MC_Stop_SML .. 250

9.2.2.5. MC_Halt_SML ... 250

9.2.2.6. MC_MoveAbsolute_SML ... 251

9.2.2.7. MC_MoveRelative_SML .. 252

9.2.2.8. MC_MoveVelocity_SML .. 253

9.2.2.9. SML_SetOpmode .. 254

9.2.3. Function block for multi-axis control ... 255

9.2.3.1. MC_GearIn .. 255

9.2.3.2. MC_GearInPos .. 256

9.2.3.3. MC_GearOut ... 257

9.2.3.4. MC_CamTableSelect ... 258

9.2.3.5. MC_CamIn .. 259

9.2.3.6. MC_CamOut .. 260

9.2.4. Function block for CNC control .. 261

9.2.4.1. SMC_Interpolator .. 261

9.2.4.2. SMC_TRAFO_XXXXX .. 264

9.2.4.3. SMC_TRAFOF_XXXXX .. 265

9.2.4.4. SMC_ControlAxisByPos .. 266

9.3. G code list ... 267

9.4. Instruction .. 269

9.4.1. IF .. 269

9.4.2. CASE .. 270

9.4.3. FOR .. 271

9.4.4. WHILE .. 271

9.4.5. REPEAT ... 272

9.4.6. EXIT ... 272

9.4.7. RETURN .. 273

9.5. Cast ... 274

9.6. Operators .. 275

9.6.1. List .. 275

9.6.2. Priority .. 277

9.7. Pointer ... 278

9.8. Confirm CPU utilizationCPU.. 279

9.9. Language selection ... 281

Table of Contents

7

9.10. Rules for identifier designation .. 282

9.10.1. Characters that can be used .. 282

9.10.2. Recommendations on how to assign identifiers ... 282

10. Technical data ... 283

10.1. Functional specifications ... 283

10.2. Factory default setting ... 284

Introduction Preface

9

1. Preface

1.1. Introduction

Thank you for purchasing the motion control "SANMOTION C" SMC200. This manual

“Motion controller SMC200-A/SMC200-B" (hereinafter referred to as S200) describes the

software including the important matters that must be aware of when using this product in

order to protect customers' safety. Please read the documentation and related instruction

manuals carefully before using, and ensure fully understand the function and performance

of the product and use it properly.

The Products presented in this manual are meant to be used for general industrial

applications. As this is designed and manufactured for general industrial applications.

Therefore, we exclude the application for the followings such as equipment and systems for

special applications.

⚫ Do not use for medical devices and other equipment affecting people’s lives

⚫ Do not use for that have significant effects on society and the general public

⚫ Do not use in an environment where vibration is present, such as in a moving vehicle or

shipping vessel

⚫ Do not use for special applications related to aviation and space, nuclear power, electric

power, submarine repeaters

However, even in the above-mentioned applications, we may allow products to be applied

on conditions for such cases that limited specific usage or require no special quality (Quality

no beyond general specification etc.). Please contact us beforehand.

◼ CODESYS® is a registered trademark of CODESYS GmbH.

◼ EtherCAT ® is registered trademark and patented technology, licensed by Beckhoff

Automation GmbH.

◼ Ethernet is a registered trademark of FUJIFILM Business Innovation Corp.

◼ 1-Wire is a registered trademark of Analog Devices, Inc.

Preface Precautions related to these Instructions

10

1.2. Precautions related to these Instructions

In order to fully understand the functions of this product, please read this instruction manual

thoroughly before using the product. After thoroughly reading the manual, keep it handy for

reference.

Although the manufacturer has taken all possible measures to ensure the veracity of the

contents of this manual, should you notice any error or omission, please notify your local

sales office or the head office of your findings.

You are strictly prohibited to use (including, without limitation, copying, modifying,

reproducing in whole or in part, uploading, transmitting, distributing) any part or all of the

manual.

Carefully and completely follow the safety instructions outlined in this manual. Note that

safety is not guaranteed for usage methods other than those specified in this manual or

those methods intended for the original product.

Permission is granted to reproduce or omit a portion of the attached figures (as abstracts)

for use.

The contents of this manual may be modified without prior notice as revisions or additions

are created regarding the usage method of the product. Modifications are performed as

per the revisions of this manual.

Documentation for further reading Preface

11

1.3. Documentation for further reading

The S200 is designed with various interfaces for configuring systems by combining

necessary peripheral devices according to your functional requirements. For the details of

the function, please refer to the instruction manual of the hardware as well.

No. Title

M0020716

SMC200-A, SMC200-B

Motion Controller

Hardware manual

M0020996

SMC-USBW-01

Wireless adapter 3A

Instruction Manual

Combination with S200 series

M0020986

SMC200-A, SMC200-B

Motion Controller

Web Application

Instruction Manual

1.4. About CODESYS

The S200 controller software is implemented based on CODESYS. Therefore, when using

the S200, please also refer to the "CODESYS Online Help" below.

 CODESYS Online Help ： 「https://www.helpme-codesys.com/」

Henceforth, when "online help" is mentioned in this manual, it means CODESYS online help.

https://www.helpme-codesys.com/

Representation Safety notes

13

2. Safety notes

2.1. Representation

At various points in this manual you will see notes and precautionary warnings regarding

possible hazards. The symbols used have the following meaning:

!

DANGER!

• indicates an imminently hazardous situation which will result in death or serious bodily injury if

the corresponding precautions are not taken.

!

WARNING!

• indicates a potentially hazardous situation which can result in death or serious bodily injury if

the corresponding precautions are not taken.

!

CAUTION!

• means that if the corresponding safety measures are not taken, a potentially hazardous situation

can occur that may result in property injury or slight bodily injury.

 CAUTION

• CAUTION used without the safety alert symbol indicates a potentially hazardous situation which,

if not avoided, may result in damage to property.

• This symbol reminds you of the possible consequences of touching electrostatically sensitive

components.

Information

Useful practical tips and information on the use of equipment are identified by the

“Information” symbol. They do not contain any information that warns about potentially

dangerous or harmful functions.

PC environment Installation of development software

15

3. Installation of development software
Please install SANMOTION C development software according to the following procedure.

Administrator authority is required for installation.

Contact your system administrator for more information.

3.1. PC environment

◆ CPU : 2.5 GHz or higher

◆ Memory : 8 GB or more

◆ Hard disk : 12 GB or more free space

◆ Ethernet port or USB port

◆ OS : Windows10 (32/64 Bit)，Windows11

3.2. Run the installer

The development software installer has the following structure.

Fig 3.1 Installer configuration

1. Right-click "SANMOTION C Software Tools 2.0.0.exe" in the installer and click "Run as

administrator".

Fig 3.2 Run the installer

Installer executable file

Storage directory of instruction manual

English manual

Japanese manual

OSS License Reference

Component data storage directory

Integrated development environment data

USB driver data

Installation of development software Run the installer

16

2. The language selection window will be displayed. Select “Japanese” or “English” and

click “OK”.

Fig 3.3 Select setup language window

3. The component selection window will be displayed. Select the component you want to

install and click “Next (N)>“.

Fig 3.4 Select components window

Components can be selected with a dialog box at the top center or a check box at the

top of each component name.

The following two types of dialog boxes are available. Selectable components are as

follows.

dialog box Integrated development environment USB driver

Full installation ✓ ✓

Custom installation Any Any

Please select at least one component. If it is not selected and you click “Next (N)>“, the

following message will be displayed and stay in the component selection window

Run the installer Installation of development software

17

4. The confirmation window of installation setting is displayed. If the settings are correct,

please click “Install”.

Fig 3.5 Installation start window

5. The installation will start.

Fig 3.6 Windows during installation

Installation of development software Run the installer

18

6. Then, the installer of the integrated development tool starts up. Please click

“NEXT>“ button.

Fig 3.7 Integrated development tool installation start window

7. The license agreement screen is displayed. Check the contents, put a check in the “I

accept the terms in the license agreement”, please click “NEXT>“.

Fig 3.8 License Agreement

Run the installer Installation of development software

19

8. The Very important information screen is displayed. Please check “I have read the

infomatin” after confirmation, and click “NEXT>“.

Fig 3.9 Very important information

9. As the screen for setting the save destination of the software is displayed, click

“NEXT>“ after confirmation. If you want to change the save destination, you can change

it from “Change ...”.

Fig 3.10 Save destination selection window

Installation of development software Run the installer

20

10. As the screen for setting the installation type of the component is displayed, please

select “Complete” and click “NEXT>“.

Fig 3.11 Installation type selection window

11. The confirmation screen of the installation setting is displayed. If the settings in steps 5

to 6 are correct, click “Install”.

Fig 3.12 Installation start screen

Run the installer Installation of development software

21

12. Installation of the integrated development tool will start.

Fig 3.13 Screen during installation

13. When the installation of the integrated development tool is completed normally, the

following window will be displayed, please click “Finish”.

Fig 3.14 Installation complete screen

Installation of development software When it does not work

22

14. Installation of the USB driver is started after installation of the integrated development

tool is completed.

15. When the installation of the USB driver is completed normally, the following window will

be displayed. A computer restart is required to complete the installation. If there is no

problem in restarting immediately, check "Restart immediately". If you want to manually

restart later, check "Manual restart later". Then click "Finish".

Fig 3.15 Screen when installation of USB driver is completed

This completes the installation of the development software.

3.3. When it does not work

Please uninstall the “SANMOTION C Software Tools 2.0.0 version 1.0.0“ from “Uninstall the

program” in the Windows control panel and install it again.

If you do not operate normally even after performing the above procedure please contact us.

USB driver is not completely uninstalled in “Uninstall a program”. To uninstall completely,

please execute “uninstall device” from “Device Manager”.

What is SANMOTION C Software Tool 2.0.0 SANMOTION C Software Tool 2.0.0

23

4. SANMOTION C Software Tool 2.0.0

4.1. What is SANMOTION C Software Tool 2.0.0

SANMOTION C Software Tool 2.0.0 is an integrated development tool that can develop

motion / PLC program, program debugging and hardware configuration conforming to

international standard IEC 61131-3.

The program language supports six types (LD, FBD, CFC, ST, SFC, IL) conforming to IEC

61131-3, and it is possible to combine program languages suitable for control contents.

4.2. Template file

The SANMOTION C project is created from a template file. You can find the template file in

the "SMC200-* Template Project" category in the "New Project" window. Select "PLC

standard project" when creating a sequence program, and select "Motion standard project"

when creating a motion program.

Fig.4.1 Template file selection window

In the template file, when using S200, the project with the minimum necessary setting is

incorporated. Therefore, users can create projects without being conscious of EtherCAT

settings, I/O control settings, etc.

SANMOTION C Software Tool 2.0.0 Screen structure

24

4.3. Screen structure

Fig.4.2 SANMOTION C Software Tool 2.0.0 basic screen

Item Detail

Menu bar edit the project.

Tool bar supports project management, search, and input of programs.

Device tree displays a list of POU, visualization, resources.

Workspace Declaration section: Declare a program variable.

Implementation section: Implement the program.

Message

window

Displays logs at program compilation and search results of specified variables.

Watch window Display variable monitoring or user defined list of watch expressions.

Information and

Status

Provides information on current logged-in user, cursor position, PLC operation

status, etc.

 ：During program execution.

 ：During program stop.

 ：During program stop by breakpoint.

If there are items that are not displayed in the window, they can be displayed by selecting

the target item from "View" on the menu bar.

Menu bar

 Tool bar

Device tree

Declaration section

Implementation section

Message window

Workspace

Watch window

Information and Status

Project structure SANMOTION C Software Tool 2.0.0

25

4.4. Project structure

The project will be managed in the device tree. In the device tree you manage all the objects

necessary to run the project, such as hardware configuration and confirmation of the fieldbus

system, hardware communication configuration and application.

Fig.4.3 Project structure diagram

As shown above, one application needs at least one POU (program) and task. An application

configuration example is shown below.

Fig.4.4 Application configuration example

No. Item Detail Reference

1 Device Target hardware to run the application “4.5 Device”

2 Application

Set of objects required to execute PLC

program

※Do not change the application name from

"Application".

―

3 Library Collection of reusable objects ―

4 POU
Program configuration unit such as PRG,

FUN or FB
“4.6 POU”

5 Task Process control of application program “4.7 Task”

6 Drive Drive configuration for motion control
“6.1.5.1 EtherCAT

master setting” or later

Application

Task

（Cyclic Task）

Program

FUN

FUN

FB

Task

（Event Task）

Program Program

FB

FB

FB

FB

Program

Program

FUN

FB

1

2

3

4

6

5

SANMOTION C Software Tool 2.0.0 Device

26

4.5. Device

Configure the target hardware to run the application.

Fig.4.5 Device screen

Item Detail

Communication Settings Configuration of the connection between the development system and a

S200.

See “4.5.1 Communication Settings” for more information.

Applications List of the applications on the S200.

Backup and Restore Back up and restore applications currently running on the S200.

Files Configuration of the file transfers between a host file system and the S200.

Log Display of the S200 log file.

PLC Settings Configuration of the handling of the I/Os: which application, behavior in the

stop state, updating, bus cycle options, etc.

See “4.5.3 PLC Settings” for more information.

PLC Shell Text-based control monitor for interrogating certain information from the S200.

Users and Groups User management with regard to the device at runtime.

Access Rrights Rights for access to objects and files on the S200.

Symbol Rights Access rights of individual user groups to symbols (symbol sets) on the S200.

Licensed Software Metrics The status of each application is displayed in a tree structure.

IEC Objects Displays objects that allow access to the device from IEC applications.

Device Parameters Display and configuration of S200 parameters.

See “4.5.4 Device Parameters” for more information.

Device I/O Mapping Configure S200 I/O mapping.

See “4.5.5 Device I/O Mapping” for more information.

Task Deployment Overview of all inputs and outputs, which are assigned to tasks – useful for

troubleshooting.

Status Device-specific status and diagnostic messages.

Information General information on the device (name, provider, version etc).

Device SANMOTION C Software Tool 2.0.0

27

4.5.1. Communication Settings

Connect with the S200 with Ethernet cable or USB cable (Type-A to Type-miniB). The initial

value of each IP address is as follows.

Interface(SILK) IP address Subnet mask

Ethernet（ETHERNET） 192.168.21.101 255.255.255.0

miniUSB（PC） 169.254.21.101 255.255.0.0

When connecting with Ethernet, please set the IP address of development PC to

192.168.21.XXX and the subnet mask to 255.255.255.0.

When connecting with USB, it is not necessary to set the IP address on the development PC.

The IP address is automatically allocated by the APIPA function. If you have disabled the

APIPA function, manually set the IP address within the range of [169.254.1.0] ~

[169.254.254.254].

The connection setting method with the S200 has automatic and manual setting.

■Automatic setting procedure

1. Click “Network Scan ...” in the communication settings to display the “Select Device”

window.

2. If there is a connectable device, it will be displayed after Gateway.

3. When you click “OK” with the device you want to connect selected, the connection

will be completed.

Fig.4.6 Device auto detection screen

If both the EHTERNET port and PC port (miniUSB) are connected between the S200 and

the development PC and simultaneous access is possible, automatic search can not be

performed correctly. In this case, specify the IP address in manual setting and connect.

■Manual setting procedure

Enter the IP address in the field of “<device not configured>“ in the communication

setting. After input, press ENTER to start scanning. If there is a connectable device, the

connection is automatically completed.

Fig.4.7 Device manual setting screen

SANMOTION C Software Tool 2.0.0 Device

28

If the PC can not connect to the S200, please confirm the environment by the following

procedure.

① Confirm gateway

Make sure the status indicator lamp on the gateway is green on the connection

screen (skip to the next confirmation item in the case of green). If it is red, it is probable

that the gateway is not running or is stopped. If it is not running, please execute

"CODESYS Gateway V3" from the Windows start screen. If it is stopped, right click on

"CODESYS Gateway" in the notification area at the lower right of the Windows screen and

select "Start Gateway".

② Confirm S200 startup status

Confirm that the status monitor (7 segment LED) of the S200 is in the RUN state

("O") (If it is not an error display and is not "O", skip to the next confirmation item). Please

press the control button only once and confirm that the status monitor display changes. If

the monitor does not change, it is probable that the S200 can not be detected due to the

heavy CPU load by the running application. Since restarting the S200 and continuing to

hold down the control button can stop the application startup, check the connection again

after stopping.

③ Confirm unit type

Make sure that the unit type declared in the device tree matches the unit type of the

target controller. You can confirm the unit type of the target controller by operating the

control button (hold down for long when "u" is displayed). If the unit type is different, "Scan

network ..." will not detect the S200. If the unit type matches and can not be detected,

proceed to the next confirmation item.

④ Confirm IP addressIP

Please confirm that the S200 and the development PC are on the same network. The

IP address of the Ethernet interface of the S200 can be confirmed by operating the control

button (long press when "n" is displayed). The PING command is issued on the

development PC, and if there is a response, the S200 is on the same network. If there is a

response to the PING command and it can not be detected, proceed to the next

confirmation item.

⑤ Confirm security software

When you use security software (firewall function) on development PC,

communication of development tool may be blocked. Please allow communication of

blocked development tools in your security software.

If there are no problems in all the above confirmation procedures, please contact us.

Device SANMOTION C Software Tool 2.0.0

29

4.5.2. File

Files can be transferred between the development PC and the controller in the file tab in the

device object.

Fig 4.8 File transfer screen

The directories that can be accessed on this tab are the default path of the PLC application

(yellow directory) and the defined path (blue directory). For the relationship between the PLC

application path and the directory structure of the user area, refer to "6.4.2 Directory structure

of user area".

Files can be transferred by selecting a file or directory and clicking the transfer button.

Development PC

Controller

Transfer

button

SANMOTION C Software Tool 2.0.0 Device

30

4.5.3. PLC Settings

In the PLC setting tab, make settings related to I/O update. External input data such as digital

input is read at the beginning of the task and external output data such as digital output is

written at the end of the task.

Fig.4.9 PLC setting screen

Item Detail

Application for I/O

handling

Select the application for I/O processing.

Update IO while in stop Whether to update the I/O value even when the device is stopped is

set.

Valid: I/O is updated even while it is stopped

Invalid: I/O is not updated while stopped

Behaviour for outputs in

Stop

Handling of the output channels when the controller enters the stop

state:

 Keep current values: The current values are retained.

 Set all outputs to default: The default values resulting from the I/O

mapping are assigned. Set the default value in the "Default Value"

column of "Device I / O Mapping".

 Execute program: You can control the handling of the output values

via a program contained in the project, which program executes at

“STOP”. Enter the name of the program in the field on the right.

Always update variables Global setting that defines whether or not CODESYS updates the I/O

variables in the bus cycle task. This setting is effective for I/O

variables of the slaves and modules only if “deactivated” is defined in

their update settings.

 Deactivated (update only if used in a task): CODESYS updates the

I/O variables only if they are used in a task.

 Activates 1 (use bus cycle task if not used in another task):

CODESYS updates the I/O variables in the bus cycle task if they are

not used in any other task.

Bus cycle task Task that controls the bus cycle. By default the task defined by the

device description is entered.

Device SANMOTION C Software Tool 2.0.0

31

4.5.4. Device Parameters

In the "Device" parameter tab, you can make settings related to device functions. Parameters

other than the I/O settings take effect after the power is turned on again.

Fig 4.10 Device Parameters setting screen

Parameter Detail Default Value

A
p
p
lic

a
ti
o
n

 Configuration Mode

Configuration mode

WEB ： Web application settings are valid

PLC： Project settings are valid

WEB

Auto Application Start

Set the automatic startup of the application

when the application exists at startup.

TRUE ：RUN state

FALSE ：STOP state

TRUE

n
e
tw

o
rk

Host name

Configuration

Mode

Hostname

WEB ： Web application settings are valid

PLC： Project settings are valid

WEB

Host name Set the host name. ‘SMC200’

Ethernet

Configuration

Mode

Configuration mode

WEB ： Web application settings are valid

PLC： Project settings are valid

WEB

Method

Set how to obtain an IP address.

DHCP ：Obtain from DHCP

Static ：Set manually

Static

IP Address Set the IP address for Ethernet port. ‘192.168.21.101‘

Network

Mask
Set netmask for Ethernet port ‘255.255.255.0‘

Default

Gateway
Default gateway 'none'

DNS Server DNS server 'none'

USB

Ethernet

Configuration

Mode

Configuration mode

WEB ： Web application settings are valid

PLC： Project settings are valid

WEB

IP Address Set the IP address for mini usb ‘169.254.21.101‘

Network

Mask
Set netmask for mini usb ‘255.255.0.0‘

SANMOTION C Software Tool 2.0.0 Device

32

Parameter Detail Default Value

I/
O

Interrupt

DI0

Set the interrupt function of DI0 and DI1.

no ： Interrupt disabled

Rising edge ： An event occurs when a rising

edge is detected.

Falling edge ： An event occurs when a falling

edge is detected.

Both edge ： An event occurs when a rising or

falling edge is detected.

no

DI1

Analog Enable

Select whether the controller outputs current

after starting.

TRUE ：Output when power on.

FALSE ：No output when power on。

FALSE

Be sure to set IP addresses of different segments (shown in red) for the IP addresses of

ethernet, PC and Wireless adapter 3A.

Name IP Address Subnet mask

ethernet 192.168.21.101 255.255.255.0

PC 169.254.21.101 255.255.0.0

wireless 192.168.22.101 255.255.255.0

If "none" is set in the network settings, the currently set value will be deleted.

If an empty character ('') is set, the currently set value is retained.

Only one default gateway can exist. If multiple default gateways are set, unexpected

routing behavior may occur.

Device SANMOTION C Software Tool 2.0.0

33

4.5.5. Device I/O Mapping

In the I/O mapping tab, you can assign the S200's digital input/output (input: 16 points,

output: 8 points) and 2 analog outputs to variables. By assigning a variable name to the I/O

mapping table as shown below, the set variable name can be used for programming.

You can assign either BOOL type or BYTE type.

Fig.4.11 Setting of variable name to Device I/O (left: digital inputs, right: digital ・ analog

outputs)

Updating the assigned variables can be set at the bottom of the I/O mapping tab.

Item Detail

Always

update

variables

Definition for the device object about updating I/O variables. The default value is defined in the device

description:

User parent device setting: Update according to the setting of the PLC Settings tab.

Enabled 1 (use bus cycle task if not used in any task): Runtime updates the I/O variables in the bus

cycle task if they are not used in any other task.

Bus cycle

task

Set the task for update the I/O. The drop-down list provides all tasks that are defined in the task

configuration of the active application.

Use parent bus cycle setting ：Use the bus cycle task that set in PLC setting tab.

 CAUTION

• Do not assign addresses used in Device I/O mapping to variables in AT declaration. If allocated,

unexpected behavior may occur. Please refer to the online help for AT declaration

SANMOTION C Software Tool 2.0.0 POU

34

4.6. POU

IEC 61131-3 creates a program in a unit called POU (Program Organization Unit). Creating

a program with this unit improves the readability and reusability of the program. Three types

of functions (FUN), function block (FB), and program (PRG) are defined in the POU.

4.6.1. Program（PRG）

A program is a POU that provides one or more values during execution. After execution of

the program, all values are retained until the next execution. The order of calling programs

in the application is defined in the task object. It is possible to call PRG, FUN, FB from PRG.

Fig.4.12 Program example (left: creation screen, center: ST, right: CFC)

4.6.2. Function block（FB）

The internal variable of FB holds its value from execution to next execution. Therefore, calling

FB with the same argument does not necessarily return the same value. The output returns

one or more data elements. Since the FB occupies memory, the instance name is required

for execution.

Fig.4.13 Example of function block (left: creation screen, center: ST, right: CFC)

4.6.3. Function（FUN）

FUN is a structural unit that does not hold internal state. Therefore, calling FUN with the

same argument always returns the same value. The output returns one data element. It can

not be instantiated. You can not call PRG, FB from FUN.

Fig.4.14 Example of function (left: creation screen, center: ST, right: CFC)

Task SANMOTION C Software Tool 2.0.0

35

4.7. Task

In IEC 61131-3, a task indicates a function that specifies a condition for executing a user

program. Tasks can define names, priorities, and triggering conditions for tasks. For each

task, you can assign a program to be processed by the task. If the task is executed in the set

cycle, these programs are processed in one cycle. The combination of priority and trigger

condition determines the order in which tasks are executed.

The following rules apply to the execution of tasks:

⚫ The task is executed if the condition is satisfied. That is, it is executed when the specified

time elapses or after the rising edge of the set event variable.

⚫ If there are valid conditions for multiple tasks, the task with the highest priority is

executed.

⚫ If there are valid conditions for multiple tasks and the same priority, the task with the

longest wait time is executed.

⚫ The calling process of the program is performed according to the order in the task

configuration (top to bottom).

Because execution of tasks is performed in descending order of priority as described above,

processing with lower priority tasks may be interrupted during execution. Also, if resources

are allocated to tasks with higher priority, tasks with lower priority may not be processed.

Interrupt by processing
of task with high priority

Execution of low
priority task due to
exhaustion of resources
of high priority task

Priority

High

Low

SANMOTION C Software Tool 2.0.0 Task

36

The following parameters can be set for the task.

Fig.4.15 Task setting screen

Item Detail

Priority

Sets the task priority.

Priority is set between [0 and 31], 0 is the highest priority, 31 is the lowest

priority.

Type

There are four types of tasks, and the program is executed at the following

timing.

Cyclic：It is executed at the “Interval” specified as the interval.

Event：It executes when acquiring the rising edge of the flag specified for

the event.

Freewheeling ： Since the program is continuously executed from the

beginning to the end of one program as one cycle, the cycle can not be set.

Since Freewheeling is executed continuously, it is necessary to set the

lowest priority. Do not set Freewheeling for tasks that call programs that

perform motion control.

Staus：Execute when the flag specified for the event is TRUE.

External：Executes when an interrupt event of digital input occurs. Refer to

“4.5.4 Device Parameters” for setting interrupts.

Watchdog

You can set the monitoring time for each task.

When the watchdog validity is checked, if the task processing exceeds the

time set in “time” and it exceeds the number set in “sensitivity”, it ends in

error state.

Add / Remove POU
POU can be added with “Add Call” and “Remove Call” can be deleted. You

can also add it by dragging POU to the task on the tree.

In this S200, set the task priority as follows.

EtherCAT_Task: Priority 0

Other tasks: Priority 5 or less

Variable SANMOTION C Software Tool 2.0.0

37

4.8. Variable

In SANMOTION C Software Tool 2.0.0, it is possible to program by variable, not conscious

of memory map.

4.8.1. Data type

It is necessary to define how to handle the assigned values for the variables in the program.

This is called data type. There are two types of data types: standard data types already

defined and user-defined data types defined by the user. The data type assigned to each

identifier (variable name) specifies how much memory space is reserved and what type of

value to store.

4.8.1.1. Standard data type

An example of the data type defined in IEC 61131-3 is shown below.

Reserve Data type lower limit upper limit Number

of bits

BOOL Boolean 0 1 1

INT 16 bit integer -32768 32767 16

DINT 32 bit integer -2147483648 2147483647 32

UINT Unsigned

16 bit integer

0 65535 16

UDINT Unsigned

32 bit integer

0 4294967295 32

REAL Real number -3.402823e+38 3.402823e+38 32

LREAL 64 bit

real number

-1.7976931348623157e+308 1.7976931348623157e+308 64

STRING Variable length

single-byte

character

string

1 character 255 characters 8

BYTE 8-bit bit string 0 255 8

WORD 16-bit bit string 0 65535 16

DWORD 32-bit bit string 0 4294967295 32

TIME Duration 0ms 4194967295ms 32

DATE date 1970-00-00 2106-02-06 32

SANMOTION C Software Tool 2.0.0 Variable

38

4.8.1.2. User-defined data type

An example of the data type defined in IEC 61131-3 is shown below.

Data type detail Declaration example

Array

Data structure in which plural data are arranged

consecutively.

It supports array of 1 to 3 dimensions.

ARRAY [0..9] OF INT

Pointer

It is a variable that holds the position information

of the place where the content of a variable is

stored.

For details, see “9.7 Pointer”

POINTER TO INT

Enumeration

type

User-defined data type consisting of string

constants and numbers.

Create enumerated objects as objects in the

Object Types tab of the Object Organizer.

TYPE Access :(

 Read:= 0,

 Write := 1);

END_TYPE

Structure

It combines various data types into one data

type.

Create the structure as an object in the Data

Types tab of the Object Organizer.

TYPE Coordinate:

STRUCT

 X : REAL;

 Y : REAL;

 Z : REAL;

END_STRUCT

END_TYPE

4.8.2. Declarative syntax

When using variables in a program, it is necessary to declare variables according to how

variables are used. In IEC 61131-3, declaration of a variable is defined as follows.

Reserve How to use variables

VAR Used inside the configuration unit (local variable).

VAR_INPUT
Input from the outside and can not be changed within the

constituent unit

VAR_OUTPUT Output from the constituent unit to the external constituent.

VAR_IN_OUT
Input and output by external unit element.

Can be changed in the configuration unit.

VAR_GLOBAL Accessible from any configuration unit.

RETAIN Define a hold variable.

CONSTANT Constant variable.

Variable SANMOTION C Software Tool 2.0.0

39

4.8.3. Initial value setting

For the variable, you can set the value to set at the start of the project. When initial value is

not set, “0” is set for numeric data and ““ is set for character string.

An example of setting is as follows.

(*INT type initialization example*)

iNumber : INT := 10;

(*Array initialization example*)

arr1 : ARRAY [1..5] OF INT := [1,2,3,4,5];

arr3 : ARRAY [1..2,2..3,3..4] OF INT := [2(0),4(4),2,3] (* 0,0,4,4,4,4,2,3 *)

(*Initialization example of structure*)

CartPos : Coordinate := (X:=100, Y:=100, Z:=100);

(*Initialization example of structure array*)

PointData : ARRAY [0..9] OF Coordinate := [(X:=100, Y:=100, Z:=100),

 (X:=200, Y:=200, Z:=200),

 (X:=300, Y:=300, Z:=300)];

If an array element is not explicitly set with a default value, it is initialized with the default

value of the basic type. In the above example, the remaining elements are set to 0.

SANMOTION C Software Tool 2.0.0 Variable

40

4.8.4. Input Assistant function

SANMOTION C Software Tool 2.0.0 has the following functions as program input assistant

function.

1. Input Assistant

“Edit” on the menu bar ⇒ “Input Assistant” displays a dialog for selecting objects that

can be entered at the current cursor position in the editor window.

Fig.4.16Input Assistant dialog box

2. Display variable candidate

If you insert a dot “.” Instead of an identifier, a selection box will be displayed and a list

of all the elements such as global variables and local variables in the project will be

displayed. If you insert a dot “.” After a POU or structure variable, a list of variables

declared in that POU or structure is displayed. Bits other than BOOL type can be

accessed by adding dots and numbers at the end.

Fig.4.17 Examples of using variable candidates

3. Completion candidate display

If press <Ctrl> + <Space> key after entering an arbitrary character string, a list of all

POUs, global variables, and available local variables in the project starting from the

input character string will be displayed.

Fig.4.18 Completion candidate display usage example

Variable SANMOTION C Software Tool 2.0.0

41

4. Automatic declaration of variables

When you enter an undeclared variable in the implementation section, the "Auto

Declare" dialog is displayed. "Type" is automatically entered with the data type inferred

by the development environment. Clicking "OK" inserts the variable into the declaration

section.

Fig.4.19 Automatic declaration of variable usage example

By default, the automatic variable declaration function is disabled only for the ST

language.

Activation of the automatic declaration function in ST language and change of editor-

related settings can be performed from "Tools" ⇒ "Options" ⇒ "SmartCoding" on the

menu bar.

SANMOTION C Software Tool 2.0.0 Programming language

42

4.9. Programming language

SANMOTION C Software Tool 2.0.0 supports six programming languages (LD, IL, FBD, CFC,

ST, SFC) conforming to IEC 61131-3, and it is possible to combine program languages suited

to the control contents.

For details on how to use each programming language, refer to the online help.

4.9.1. LD (Ladder Diagram)

The ladder diagram developed from the electrical circuit control fig used in the automobile

industry to describe the relay control circuit. This language consists of a combination of

multiple contacts and coils on the current line (line) flowing from left to right. The “ON” and

“OFF” states of the contacts placed on each line are transferred to the connected coils. It is

easy to understand because the structure is simple.

Fig.4.20 LD Description example

4.9.2. IL (Instruction List)

It is a low-level language similar to an assembler. It consists of one command, one operand,

and one optional label on each line. It is a language that is often used for prioritizing

processing speed.

Fig.4.21 IL Description example

4.9.3. FBD (Function Block Diagram)

FBD is a graphic oriented programming language. It has an input variable and an output

variable and combines multiple functions and function blocks. The language of the feature is

easy to grasp the flow of signals and data.

Fig.4.22 FBD Description example

Programming language SANMOTION C Software Tool 2.0.0

43

4.9.4. CFC (Continuous Function Chart)

CFC is a graphic oriented programming language. Unlike FBD, there is no compulsion such

as line execution, feedback loop etc. are possible, and various functions can be arranged

freely. It is a language easy to grasp the flow of signals and data.

Fig.4.23 CFC Description example

4.9.5. ST (Structured Text)

It is a high level text language that supports structured programming and has language

syntax very similar to BASIC. Since it is easy to describe calculation formulas and logical

expressions, it is a language that is often used for creating complicated programs.

Fig.4.24 ST Description exampleST

4.9.6. SFC (Sequential Function Chart)

A graphic language for describing the sequence control of the control system. A step

describing processing under the state, a transition describing the state transition condition,

and a link that is a line connecting the step and the transition. It is used to describe time and

event driven control sequences.

Fig.4.25 SFC Description example

SANMOTION C Software Tool 2.0.0 Programming language

44

4.9.7. Program language features

Each programming language has good, weak control contents. Therefore, by selecting the

programming language according to the control contents, readability and processing

performance can be improved.

A table summarizing the good and weak control contents of each programming language is

shown below.

Processing details LD IL FBD CFC ST SFC

logical operation △ × ○ ○ △ ×

Formula manipulation △ × △ △ ○ ×

Simple relay sequence processing ○ × △ △ △ ×

Sequence processing by state transition △ × × × △ ○

Complex control process △ × △ △ ○ ×

In case of restrictions on program memory △ ○ △ △ △ ×

In case of requiring processing speed △ ○ △ △ △ ×

Representation that is easy to handle with

control flow
× × △ △ △ ○

In case of want to check the control

operation visually.
○ × ○ ○ × △

＜Meaning of symbols＞

 ○ ： Suitable， △ ： Sometimes it is not suitable， × ： Unsuitable

IL language is disabled at default setting. please put a check mark the following item to

display IL language. Menu bar→”Tools”→”Options…”→”FBD，LD，and IL editor”→”IL”

→”Enable IL”

Add device configuration file SANMOTION C Software Tool 2.0.0

45

4.10. Add device configuration file

If the configuration file for the EtherCAT slave or EtherNet / IP adapter is not installed in the

development environment, installation must be performed using the “Device Repository”.

Please, obtain the files to be installed from the device manufacturer you are using.

Type File Extension

EtherCAT Slave ESI Fail .xml

EtherNet/IP Adapter EDSFail .eds

The following shows the installation procedure.

1. Please select "Device repository ... (D)" from "Tool" on the menu bar.

Fig 4.26 Device Repository

2. The Device Repository window will open. Click on "Install (I)".

Fig 4.27 Device repository window

SANMOTION C Software Tool 2.0.0 Add device configuration file

46

3. The Device Description Installation window will be displayed, so select the file to be

installed. Note that only the file format set in the red frame at the bottom of the image is

displayed in this window. Change according to the format of the file to be installed.

Fig 4.28 Install Device Description window

4. If it is successfully installed, the display will be as follows.

Fig 4.29 Device repository window when installation is complete

Library SANMOTION C Software Tool 2.0.0

47

4.11. Library

4.11.1. Add library

The library provides modules and functions for use with the SANMOTION C Software Tool

2.0.0 application. Only the minimum necessary library is added to the project created from

the template file. Therefore, you need to add libraries as needed.

The representative library is described below.

Library Detail

File Access Used for file control

Network Used for network control

Serial Communication Used when performing serial communication control

Memory Used for memory control.

Library is added from "Library Manager". The following shows the procedure for adding a

library.

1. Double-click "Library Manager" in the device tree and select "Add library".

Fig 4.30 Library Manager

2. The Add Library window will be displayed, so select the library you want to add. Note

that only the basic library is displayed in the window that is displayed first.

Fig 4.31 Add Library window

SANMOTION C Software Tool 2.0.0 Library

48

4.11.2. Create library

You can create a new library. This allows you to use your own POU in multiple projects. The

following is an example of the procedure for creating a library.

Please refer to CODESYS Online Help for details on each item.

1. The library is created from the template file. There is a template file in the “Libraries”

category in the “New Project” window. This time, select the standard template

"CODESYS library".

Fig 4.32 Create a new library

2. Set up the library. Click the POU at the bottom of the device tree to switch tabs and

display the template POU. You can change the creator of the library, namespace, etc. by

clicking "Project Information".

Be sure to set unique values for the default namespace and placeholder.

You can edit the default namespace in "Overview" and the placeholder in "Properties".

Fig 4.33 Project Information

Library SANMOTION C Software Tool 2.0.0

49

3. Create a new function. Right click the “Functions” folder of the template and select “Add

Object” → “POU…”.

Fig 4.34 Create a new function

4. The "Add POU" window will be displayed. Set up the function.

Fig 4.35 Add POU

SANMOTION C Software Tool 2.0.0 Library

50

5. Describe the processing content in the added function. This time, we will create a

function that receives two INT type variables as inputs and returns the sum.

Fig 4.36 Function description

6. Compile the library. Select "Build"-> "Check all Pool Objects" from the menu bar to start

compiling. When the compilation is completed normally, the message "0 errors, 0

warnings" is displayed.

Fig 4.37 Compile result

7. When the compilation is complete, save the library from "File" on the menu bar. There

are two types of library file formats.

(1) Select "Save Project" or "Save Project As" to save it as a library file (.library). This

format allows you to re-edit the library. You can also refer to the source code from

the project.

(2) Select "Save Project As Compiled Library" to save it as a compiled library file

(.compiled-library). Files of this format cannot be re-edited and the source code

cannot be referenced from the project.

Fig 4.38 Saving the library

Library SANMOTION C Software Tool 2.0.0

51

4.11.3. Install library

The newly created library can be called by installing it in the SANMOTION C Software Tool

2.0.0 application.

The following shows how to install the library.

Select “Tools” → “Library Repository” from the menu bar to display the “Library Repository”

window.

Click “Install” and select the library file you want to install.

When the installation is complete, the new library will be displayed in "Installed libraries".

Fig 4.39 Install the library

The installed library can be used in the project by calling it in the same procedure as "4.11.1.

Add library".

SANMOTION C Software Tool 2.0.0 Library

52

4.11.4. Use library

Shows how to use the added library.

The POU in the added library can be used by using a unique namespace.

You can check the namespace for each library in the library manager.

Fig 4.40 Check the namespace

As an example, use the function that returns the sum of two INT type variables created in

"4.11.2. Create library". You can use the function in the added library by writing

"<namespace>.<function name>". In this example, the process is to store the sum of “a” and

“b” in the variable “c”.

Fig 4.41 Use a function

Application transfer SANMOTION C Software Tool 2.0.0

53

4.12. Application transfer

There must be no error compiling the program to transfer the application to the controller.

The controller connection settings must be set.

4.12.1. Transfer from the integrated development environment via the

network

The procedure for transferring an application from the integrated development environment

via the network is described below.

1. Select the controller in the device tree to display the communication settings tab screen.

Fig 4.42 Controller communication setting screen

2. Please refer to "4.5.1 Communication Settings" for the connection method.

3. After connecting, you can transfer the application by selecting "Online"→"Login" from

the menu bar.

Fig 4.43 Login message when application does not exist

SANMOTION C Software Tool 2.0.0 Application transfer

54

If the application already exists on the controller and you make changes related to the

system configuration (For example, changing the number of control axes), the following

message will be displayed. Select "Yes" to transfer.

Fig 4.44 Login message when the application exists and there is a severe change

If the application already exists on the controller and you change anything other than the

parts related to the system configuration, the following message is displayed. Select an

option according to the transfer content, and then click OK to start the transfer process.

Fig 4.45 Login message when the application exists and is not a severe change

Parameter name Detail

Login with online change. Download only the changes in the running application.

Online changes keep the project running. No application

initialization is performed.

Login with download. Generates the code for the entire application and downloads it.

This command initializes all variables except retain data.

Login without any change. It transitions to the login state without transferring the application.

Update bootproject A boot project is a project that is loaded when the controller

starts. Therefore, if this option is not enabled, the project that

does not reflect the changes will be loaded when the power is

turned on again.

If you transfer the application by "Login with online change." when changing the

visualization, the application will not be initialized. Screen changes may not be reflected.

Therefore, when changing the visualization, use " Login with download." to transfer the

application.

Application transfer SANMOTION C Software Tool 2.0.0

55

4.12.2. Source code downloads and upload

The integrated development environment has a function to transfer the project source code

to the controller as a project archive. You can then load this project archive from the controller

into your integrated development environment as needed.

4.12.2.1. Source download(Development PC → Controller)

The command to download the source code differs depending on the login status.

[Login]

You can transfer the source code to the connected controller by selecting "Online"→ "Source

Download to Connected Device" from the menu bar.

[Logging out]

You can transfer the source code by selecting "File"→ "Source Download…" from the menu

bar and selecting the controller you want to download in the following window.

Fig 4.46 Source code download destination selection screen

If the source code is successfully downloaded, the project archive Archiv.prj will be saved in

the user area.

Fig 4.47 Project archive creation directory

SANMOTION C Software Tool 2.0.0 Application transfer

56

4.12.2.2. Source upload(Controller → Development PC)

You can upload the source code by selecting "File"→ "Source upload…" from the menu bar

and selecting the controller you want to upload in the following window.

Fig 4.48 Source code upload source selection screen

If a valid project archive exists for the selected controller, the following window will be

displayed. You can open the project by setting the deployment destination of the project and

clicking "Extract".

Fig 4.49 Source code expansion setting screen

Debug function SANMOTION C Software Tool 2.0.0

57

4.13. Debug function

SANMOTION C Software Tool 2.0.0 provides various options for testing your application and

detecting errors. Debug is to find and correct errors in programs. Using breakpoints and

stepping commands, you can examine specific parts of a program. By writing values to

variables, you can influence the running program.

4.13.1. Monitoring

When the application is running on the S200, in the SANMOTION C Software Tool 2.0.0

there are some features for monitoring and changing the values of the variables as well as

for recording and storing the value charts.

Fig.4.50 Example of monitoring display

From the menu bar “Debug” ⇒ “Display Mode” you can switch the display of the variable

value to binary, decimal, hexadecimal.

SANMOTION C Software Tool 2.0.0 Debug function

58

The maximum number of arrays that can be displayed is 1000. If you want to check

variables with a sequence number of 1000 or more, change the setting in "Monitoring

range". The procedure is shown below.

1. Log in to S200 and double-click the type field.

2. A window for setting the monitoring range will be displayed. Change it to any value.

Debug function SANMOTION C Software Tool 2.0.0

59

4.13.2. Breakpoint

Breakpoints are commonly used for debugging programs. You can set breakpoints at

specific positions in the program to force an execution stop and to monitor variable

values. The following table shows an overview of all defined breakpoints for an

application.

Item Detail

Enable/disable breakpoint （F9） Toggles the status of the breakpoint or execution point between

“enabled” and “disabled”

Start （F5） Move to the next breakpoint.

Step into （F8） Execution of each statement one at a time; also in called POUs.

Step over （F10） Execution of statements in one step; called programs are

processed.

Fig.4.51 Using Breakpoints

 CAUTION

• If you place a breakpoint in the POU being executed with EtherCAT_Task and stop the program,

EtherCAT communication also stops. Be aware that it may cause unexpected behavior.

Halted at breakpoint

Breakpoint enabled

Breakpoint settable

SANMOTION C Software Tool 2.0.0 Debug function

60

4.13.3. Forcing and Writing Variables in online

Variable values in the PLC can be changed in online mode. The value that can be written

depends on the variable type. You can select as many variables as you want to write. It can

be used to input triggers and edit variables. By using the dialog box, you can perform variable

input at once. The command of substitution function is as follows.

Item Detail

Write Values （Ctrl + F7） This command sets a predefined value to a variable on

the controller one time.

Force Values （F7） This command sets a permanent predefined value to a variable on

the controller.

Unforce Values （Shift + F7） This command resets the forcing of all variables.

Fig.4.52 Example of writing value

4.13.4. Flow Control

With flow control, you can monitor the processing of the application program. With an

activated flow control, IDE displays the variable values and results from function calls and

operations at the respective processing location and time. In this way, the exact lines of code

and networks that run through the current cycle are marked in colors.

It can be set from “Debug” menu bar “Toggle Flow Control Mode”.

Fig.4.53 Example of flow control display

Debug function SANMOTION C Software Tool 2.0.0

61

4.13.5. Trace

You can use a Trace to follow the value history of variables on the controller in a similar way

as a digital sampling oscilloscope.

Fig.4.54 Trace screen

The following is procedure for using Tarce.

This sample program counts up execution of PLC_PRG from 0 to 100. And it is recorded in

iCounter.

Fig.4.55 Structure of sample project

1. Create a trace object

Right click on “Application” and select “Add Object” → “Trace”, add trace object. You can

set the object name when adding, so please set any name.

Fig.4.56 Create a trace object

SANMOTION C Software Tool 2.0.0 Debug function

62

2. Double click on the created trace object. The following trace editor opens.

Fig.4.57 Trace

Item Detail

Configuration Opens the Trace configuration dialog. The Variable settings are

displayed on the right.

Add variable Adds a new trace variable and opens the Trace configuration dialog

with its variable settings. Select a variable in the input field of the

Variable setting to trace its value curve.

Hide instance paths Display of the variable name in the list

Example：PLC_PRG.iCounter

Enable ： iCounter

Disable ： PLC_PRG.iCounter

Debug function SANMOTION C Software Tool 2.0.0

63

3. Click “Configuration” to set the trace. The task sets MainTask. This is because the

sample project uses only MainTask.

Fig.4.58 Trace Configuration(Task)

Item Detail

Enable trigger Enable: Triggering is activated. The trace data is buffered in runtime mode only

when a trigger signal has been sent.

Disable: Continuous display of current records

Trigger Variable Signal that is used as a trigger. A complete instance path is required.

Trigger edge Defined the edge detection for triggering:

positive ： For Boolean trigger variables, triggering occurs when the values

changes from FALSE to TRUE.

 For analog trigger variables, triggering occurs when the value as defined in

Trigger Level is reached from below.

negative ： For Boolean trigger variables, triggering occurs when the values

changes from TRUE to FALSE.

 For analog trigger variables, triggering occurs when the value as defined in

Trigger Level is reached from above.

both： For Boolean trigger variables, triggering occurs when the values changes.

 For analog trigger variables, triggering occurs when the value as defined in

Trigger Level is reached.

Post trigger Number of records per trace variable that are buffered after triggering. Preset:

50. Value range: 0 to (232 - 1)

Trigger Level Value that is reached for triggering

Task Task where data was recorded

Recording

condition

In runtime mode, the application checks the recording condition. If it is fulfilled,

then the trace data is buffered.

Comment Comment of Recording

Resolution Measure for the time stamp that is recorded per data set

Automatic restart After the device is restarted, the trace is started automatically if the trigger has

not occurred yet.

Advanced trace

settings

This dialog provides extended settings for recording data.

SANMOTION C Software Tool 2.0.0 Debug function

64

4. Click “Add Variable” and set the variable to be recorded. In the sample project, the

variable sets PLC_PRG.iCounter.

Fig.4.59 Trace Configuration(Variable)

Item Detail

Variable Set the variable.

Graph color Color of the variable in the trace diagram

Line Type Display as line chart

Line ：Values are linked to form a line.

Step ：Values are linked in the form of steps

None ：Values are not linked

Point type Display as scatter chart

Dot ：Value is displayed as a dot

Cross ：Value is displayed as a cross.

None ：value is not displayed

Activate minimum

warning

Warning when less than the lower limit

Cretical lower limit If the value of the trace variable falls below the limit, the variable is

displayed in the warning color.

Warning minimum

color

Warning color on falling below the limit

Activate maximum

warning

Warning when exceeding the upper limit

Cretical upper

limit

If the value of the trace variable exceeds the upper limit, the variable is

displayed in the warning color.

Warning

maximum color

Warning color on exceeding the limit

Debug function SANMOTION C Software Tool 2.0.0

65

5. The following commands can be used with the trace function. To start tracing, execute

“Download trace “.

Symbol Name Detail

Download trace This command transfers the trace configuration on the controller

to the associated application, and starts the data recording. The

recorded data is transferred back to the development system. The

trace diagram shows the current samples and continues.

Start Trace This command starts the data recording on the S200 when it is

stopped.

Stop Trace This command stops the data recording of a trace.

Reset Trigger This command resets the trace configuration after a triggered data

recording. Then the application can record new data and react to

a trigger again.

Mouse Zooming This command enables and disables mouse zooming in the trace

diagram.

Reset View This command resets the trace diagram to the default view.

AutoFit This command scales the y-axis of the trace diagram for optimum

display of all graphs, making sure that the y-values fit in the visible

region of the diagrams. The command works with both single-

channel and multi-channel displays.

Cursor This function

 inserts a trace cursor into the trace diagram when no trace

cursor is available

 inserts a second trace cursor into the trace diagram when 1 trace

cursor is available

 removes the trace cursors when 2 trace cursors are available

Compress This command compresses the trace graph by zooming into the

displayed time range by a fixed percentage.

Stretch This command stretches the trace graph by zooming out of the

displayed time range by a fixed percentage.

Trace data is displayed as shown below.

Fig.4.60 Trace editor during execution

SANMOTION C Software Tool 2.0.0 Debug function

66

4.13.6. Simulation

If you do not have a target device (controller), you can debug the program using simulation.

In this case, the application runs on the simulated controller.

To use the simulation function, it is necessary that there are no errors in compiling the

program and you are not logged in to the controller.

The following shows how to debug using the simulation function.

1. Select "Online" → "Simulation" from the menu bar, or right click the controller in the

device tree and select "Simulation" to enable the simulation mode. When simulation

mode is enabled, the controller’s name in the device tree is displayed in italics.

Fig.4.61 Simulation mode

2. Select "Online" → "Login" from the menu bar.

3. The first time you log in as an active application, you will be asked if you want to create

and load the application "Sim. <Device name>. <Application name>". Select Yes to

continue.

4. Log in to the controller in which the application was simulated. If you log in in simulation

mode, a warning symbol is displayed on the controller in the device tree.

Fig.4.62 Login in simulation mode

5. You can now start debugging. After debugging is complete, you can log out of the

controller and exit simulation mode in the same way as enabling.

Debugging in simulation mode is only possible for 30 minutes in a row. A license error will

occur 30 minutes after login. To debug again, select "Online"-> "Reset warm" from the

menu bar and re-execute the application.

EtherCAT communication cannot be simulated in simulation mode. Also, only "Model

number: SMC200-A" can control the EtherCAT slave axis as a virtual axis.

Web application Settings in the Web application

67

5. Settings in the Web application

5.1. Web application

The Web application is a standard application installed in the S200 that allows you to perform

information and settings for the S200 using a web browser.

This section describes network and service setting parameters.

For details of other items, refer to "M0020986 Web Application Instruction Manual".

Fig.5.1 Web application setting items

Settings in the Web application Web application

68

Item Detail

Controller Host name

Ethernet port IP address

Subnet mask

Use DHCP （Active / Inactive）

DNS

Gateway

USB port IP address

Subnet mask

Wireless LAN IP address

Subnet mask

Use DHCP （Active / Inactive）

DNS

Gateway

Mode (AP (Access Point) / STA (Station))

SSID

Security (Personal / None)

Country code （Specify country of use）

Password

Date and time setting Current date and time setting

NTP （Active / Inactive）

Time zone

Auto start

(Automatic startup settings for each

service)

PLC Project: application program

SMB: Samba Server

FTP: File Transfer Protocol Server

NTP: Network Time Protocol Server

Edge gateway: Connection service with cloud services

【Buttons for each item】

Reload: Reads the currently set data from the controller.

Set: Sets the entered value to the controller.

EtherCAT Communication function

69

6. Communication function

6.1. EtherCAT

EtherCAT is an open network communication between master and slave using real-time

Ethernet. In transmission, when a frame transmitted from the master passes through the

slave, the Output data is taken out and the Input data is inserted in the same manner. The

EtherCAT slave device can reduce the frame delay time by reading / writing data while

passing the frame in that node.

For the EtherCAT communication of SMC200, the daisy chain is adopted as the topology

configuration, and the category 5 or more of the cable is recommended.

Fig 6.1 EtherCAT frame flow

EtherCAT provides the cyclic communication to transfer the process data periodically, and a

mailbox communication for reading / writing of data to any slave at any time.

RS3 EtherCAT amplifier supports CoE (CANopen over EtherCAT). Following two methods

are available for accessing from slaves to SANMOTION C as the master.

⚫ PDO（Process Data Object） ： Cyclic communication

⚫ SDO（Service Data Object） ： Mailbox communication

By accessing the above-mentioned ways, we can change or receive a variety of information.

c cc

c

Master
Slave1

c c
ccc cc

Slave2

EtherCAT frame

ccc

Slave3

Communication function EtherCAT

70

6.1.1. Supported operation mode

The EtherCAT-CoE specification has various operation modes called operation modes.

The corresponding operation mode for SMC200-A or SMC200-B is shown below.

Operation Mode SMC200-A SMC200-B

Profile Position Mode 〇 〇

Profile Velocity Mode 〇 〇

Homing Mode 〇 〇

Cycle Sync. Position Mode 〇 ×

Cycle Sync. Velocity Mode 〇 ×

Cycle Sync. Torque (force) Mode 〇 ×

In profile position mode and profile velocity mode (hereinafter PTP control), the slave

generates trajectory. For example, in the case of profile position mode, the target position,

profile speed, and profile acceleration / deceleration are passed from the master to the slave,

and the slave operates by generating a trajectory. As a result, the CPU load on the S200 can

be reduced.

Fig 6.2 Generate trajectory in profile position mode

In Cycle Sync. Position Mode and Cycle Sync. Velocity Mode, EtherCAT master performs

generates trajectory. For example, in Cycle Sync. Position Mode, the master performs start

generation. After that, the generated trajectory is periodically supplied to the slave as the

target position. This allows multiple axes to operate in synchronization.

Fig 6.3 Generate trajectory in profile position mode

Target Position

Profile Velocity

Profile Acceleration

and Deceleration
Generate trajectory

Target Position

Generate trajectory

EtherCAT Communication function

71

6.1.2. Object Dictionary

The Object dictionary is one of the features of CANopen, it has a role as an interface between

the communication and application.

All of the objects in the Object dictionary consists of 16bit index represented by four

hexadecimal digits with a sub-index by 8bit. The summary of the Object dictionary defined

by the CoE is as below.

Index(Hex) Object

0x0000～0x0FFF Data type Area

0x1000～0x1FFF Communication Profile Area

0x2000～0x5FFF Manufacturer Specific Profile Area

0x6000～0x9FFF Standardized Device Profile Area

0xA000～0xFFFF Reserved

Each object has the following parameters:

◆ Data type ： Data type（BOOLEAN，Usigned32 etc.） of objects

◆ Access rights ： Access restrictions to object（RW，WO，RO，CONST）

◆ PDO mapping ： PDO mapping of objects enable / disable (Possible, No)

◆ Update ： Effective timing of the writing of the data in the SDO communication (with

immediate effect, ESM transition requirements, effectiveness in the control power is

restored)

When accessing objects, those parameters need to be cehceked. Refer to the instruction

manual of the servo amplifier for the parameters of each object.

By read / ride to the object dictionary entries, various parameters of the slave amplifier such

as device settings, monitoring are controlled.

6.1.3. Process Data Object(PDO)

EtherCAT real-time communication uses the PDO communication. PDO communication is

high priority message sent by the broadcast. Therefore, PDO communication is suitable for

the transmission of real-time data (control of I/O modules, the measured values of sensors,

etc.). Setting the object to cyclic communication data is called PDO mapping.

The default PDO mapping is set according to the contents of the EtherCAT slave ESI file to

be added. Refer to 【Expert Process Data】 in “6.1.5.2 EtherCAT slave setting” for how to

edit PDO mapping.

Communication function EtherCAT

72

6.1.4. Service Data Object(SDO)

SDO is the method to access all of the entries of the object dictionary using the request and

response messages. SDO communication is asynchronous communication. That can't

read/write parameters in real time because executed only if it is possible to reply in the

intervals of the PDO communication by the command from the controller.

SDO communication is a way of communication that aims to get or to set slave parameters

before starting PDO communication, or to check state of slaves during interval of PDO

communication. There is Start-up parameter functions as one of the SDO communication

setting way before starting PDO communication.（See 【Startup Parameters】 in ”6.1.5.2

EtherCAT slave setting”。SDO communication in interval of PDO communication can be

achieved by using of the function blocks. （ See “6.1.6 Function block for SDO

communication”）.

EtherCAT Communication function

73

6.1.5. EtherCAT device editor

6.1.5.1. EtherCAT master setting

The setting items of the EtherCAT master are shown below. Since EtherCAT NIC settings

are set in the template project, please do not change.

“Auto config Master / Slave” automatically configures the master and slave. This

configuration is activated by default and is strongly recommended for standard

applications as it is usually sufficient for auto-configured content. Deactivating this option

requires you to have expert knowledge, as you will have to do all the configuration of the

master and slave manually.

Fig 6.4 EtherCAT master setting screen

Item Detail

Cycle time

Set the cycle time of EtherCAT. It is possible to set 2000µs, 4000µs, 8000µs,

16000µs as the cycle time. Recommend more than 2000µs.

Purpose
Motion control Robot control

1-4 Axis 5-8 Axis 4 Axis

Cycle time 2000µs～ 8000µs～ 8000µs～

Sync Offset
Enables the time delay of the sync interrupt of the EtherCAT slave to be adjusted

to the cycle time of the PLC. Please set 30%.

Use LRW

instead of

LWR/LRD

If this option is enabled, LRW (read/write command) is used for EtherCAT

communication. If disabled, LRD (read command) and LWR (write command)

are sent in separate commands.

Enable

messages per

task

If this option is enabled, PDO-mapped variables will be updated in the task of

the POU where the variable is used. If disabled, PDO mapped variables will be

updated in EtherCAT_Task. [Recommended: Disabled]

Automatic

Restart Slaves

With this option enabled, if communication with a slave is interrupted, the master

will restart the slave and try again. If disabled, the slave will not restart even if

communication is interrupted. [Recommended: Disabled]

If you connect a slave different from the configured EtherCAT slave with 'Enable slave

auto start' enabled, reconnection processing is always performed, so the S200's CPU load

may become large and it may not operate properly.

When enabling this option, please check the connection status carefully.

Communication function EtherCAT

74

6.1.5.2. EtherCAT slave setting

The following items can be set in the slave setting. The slave setting screen is displayed by

double clicking on the added slave.

【General】

On the "General" tab, you can set slave parameters.

Fig 6.5 Slave setting screen (general)

Item Detail

Address
Sets the address used for EtherCAT communication. Fields can be edited only

when the auto-configuration mode of the EtherCAT master is deactivated.

Distributed Clock
Drop-down list containing settings for distributed clocks as described in the

slave's device description file.

Additional

Expert settings：If this option is enabled, special settings such as check items

for slave startup and timeout are added. In addition, the "Expert Process Data"

tab is displayed and the PDO mapping can be edited.

Optional：If this option is enabled, the station alias address can be set for

EtherCAT slaves that support the station alias function.

For details on each parameter, refer to “Fieldbus Support”⇒ “EtherCAT Configurator”⇒

“EtherCAT Slave”⇒ “Tab 'EtherCAT-Slave - General' in the online help.

EtherCAT Communication function

75

【Expert Process Data】

"Expert Process Data" tab is only displayed if "Enable Expert Settings" is active and allows

you to edit the PDO configuration.

item detail

Sync Manager

A list of data sizes allocated to Sync Manager by type is displayed, and the PDO

mapping list allocated to the selected Sync Manager is displayed in "PDO

Assignment".

PDO Assignment
You can select the PDO mapping to be assigned to Sync Manager from the list.

The same settings can be made on the "Process Data" tab.

PDO List

The total size of the objects entered in each PDO mapping and the assigned

Sync Manager channel number are displayed, and the objects entered in the

selected PDO mapping are displayed in "PDO Content".

PDO Content You can edit the PDO mapping selected in "PDO List".

The method of mapping "0x2103.01 warning status" in RS3 EtherCAT amplifier using "Expert

Process Data" is described below.

1. Since "Warning status" is a read-only object, select the PDO mapping assigned to SM3

in the "PDO List", and select "Insert" in "PDO Content".

Fig 6.6 Select PDO Mapping to Edit

Communication function EtherCAT

76

2. A list of object dictionaries defined in the ESI file will be displayed, so select “0x2103.01

Warning status” and click OK.

Fig 6.7 Add 0x2103.01 Warning status

3. Confirm that the warning status has been added in the "Process Data" tab.

Fig 6.8 Confirmation 0x2103.01 Warning status

EtherCAT Communication function

77

【Startup Parameters】

On the "Startup Parameters" tab, you can set parameters of the slave using SDO.

Fig.6.9 Slave setting screen (Startup Parameter)

I will explain how to change the homing mode by using "startup parameter". Please set

according to the following procedure.

1. Please click "Add".

Fig.6.10 Add startup parameters

2. Please select the object dictionary you want to change. For this time, please select "16

6098: 16 # 00 Homing method". Enter the value of the homing method you want to set

to the value. Then click "OK".

Fig.6.11 Selection of items from target object dictionary

Communication function EtherCAT

78

3. After the addition, the display will be as follows.

Fig.6.12 Slave setting screen

EtherCAT Communication function

79

6.1.6. Function block for SDO communication

6.1.6.1. ETC_CO_SdoRead

This function block is used to read amplifier parameters in SDO communication.

Fig 6.13 ETC_CO_SdoRead

VAR_INPUT

xExecute BOOL

Rising edge: Starts the reading of the slave

parameters.

In order to release the internal channel again

afterwards, the instance must be called at least

once with xExecute: FALSE.

xAbort BOOL TRUE: The current read process is aborted.

usiCom USINT Number of the EtherCAT master: usiCom is

always 1 if only one EtherCAT master is used. If

several masters are used, 1 designates the first,

2 the second and so on.

uiDevice UINT Physical address of the slave.

If the auto-configuration mode is deactivated in

the master, the slave can be given its own

address. This address must be specified here.

If the auto-configuration mode is activated, the

first slave is given the address 1001. The current

address of a slave is always located in the Slave

dialog of the slave in the EtherCAT address field.

usiChannel USINT Reserved for future extensions

wIndex WORD Index of the parameter in the object directory.

bySubindex BYTE Subindex of the parameter in the object directory.

udiTimeOut UDINT Definition of the watchdog time in milliseconds.

If the reading of the parameters is not yet

complete on expiry of this time, an error message

is output.

pBuffer CAA.PVOID Pointer to a data buffer in which the data are

stored after a successful parameter transfer

szSize CAA.SIZE Size of the data buffer (pBuffer) in bytes

Communication function EtherCAT

80

VAR_OUTPUT

xDone BOOL
TRUE: Reading of the parameter was completed

without error.

xBusy BOOL TRUE: Reading is not yet completed.

xError BOOL TRUE: An error occurred during reading.

eError ETC_CO_ERROR Information about the cause of the error that was

displayed by xError, e.g. ETC_CO_TIMEOUT in

case of a timeout

udiSdoAbort UDINT If an error has occurred in the device, this output

provides further information about it

szDataRead CAA.SIZE Number of bytes read; maximally szSize (input).

6.1.6.2. ETC_CO_SdoWrite

This function block is used to write amplifier parameters in SDO communication.

Fig 6.14 ETC_CO_SdoWrite

VAR_INPUT

xExecute BOOL

Rising edge: Starts the reading of the slave

parameters.

In order to release the internal channel again

afterwards, the instance must be called at least

once with xExecute: FALSE.

xAbort BOOL TRUE: The current read process is aborted.

usiCom USINT Number of the EtherCAT master: usiCom is

always 1 if only one EtherCAT master is used. If

several masters are used, 1 designates the first,

2 the second and so on.

uiDevice UINT Physical address of the slave.

If the auto-configuration mode is deactivated in

the master, the slave can be given its own

address. This address must be specified here.

If the auto-configuration mode is activated, the

first slave is given the address 1001. The current

address of a slave is always located in the Slave

dialog of the slave in the EtherCAT address field.

usiChannel USINT Reserved for future extensions

wIndex WORD Index of the parameter in the object directory.

bySubindex BYTE Subindex of the parameter in the object directory.

EtherCAT Communication function

81

VAR_INPUT

udiTimeOut UDINT Definition of the watchdog time in milliseconds.

If the reading of the parameters is not yet

complete on expiry of this time, an error message

is output.

pBuffer CAA.PVOID Pointer to a data buffer containing the data to be

written.

szSize CAA.SIZE Size of the data buffer (pBuffer) in bytes

eMode ETC_CO_MODE AUTO mode is usually set and the mode suitable

for the length is thus automatically used.

VAR_OUTPUT

xDone BOOL
TRUE: Reading of the parameter was completed

without error.

xBusy BOOL TRUE: Reading is not yet completed.

xError BOOL TRUE: An error occurred during reading.

eError ETC_CO_ERROR Information about the cause of the error that was

displayed by xError, e.g. ETC_CO_TIMEOUT in

case of a timeout

udiSdoAbort UDINT If an error has occurred in the device, this output

provides further information about it

szDataWritten CAA.SIZE Number of bytes written; maximally szSize

(input).

Communication function EtherCAT

82

6.1.7. PDO communication

To send and receive data by PDO communication, assign variables to the EtherCAT object

according to the following procedure.

6.1.7.1. Assign variables

Follow the procedure below to assign variables to EtherCAT objects.

1. Double-click the EtherCAT device in the device list to display the setting screen and

select "EtherCAT I / O Mapping".

Fig 6.15 EtherCAT I/O Mapping

2. Select EtherCAT I / O Mapping to display a list of objects currently assigned to PDO.

Enter any variable name in the "Variable" column of the data you want to use.

Fig 6.16 Assign variables

EtherCAT Communication function

83

6.1.7.2. Use variables

The variables assigned in "6.1.7.1. Assign variables" can be used in the program. The figure

below is an example of a program that uses the assigned variables "Drive1_DO" and

"Drive1_DI".

EtherCAT objects include read-only objects and read-write objects. For details on the objects,

refer to the instruction manual of each device.

Fig 6.17 Use variables

For EtherCAT devices used as axes, the system performs PDO communication for motion

control.

Objects used by the system cannot be written, they can only be read.

Communication function EtherNet/IP

84

6.2. EtherNet/IP

This S200 supports EtherNet/IP scanners and adapters. EtherNet/IP is an industrial protocol

using Ethernet. By using EtherNet/IP, data can be exchanged between multi-vendor products.

This S200 supports data exchange via cyclic communication (Implicit communication) and

data exchange via message communication (Explicit communication).

6.2.1. Basic specifications

Item Detail

Scanner

Maximum number of

connected devices
4

Minimum communication

cycle
50ms

Task Interval
IOTask ：50ms

ServiceTask ：20ms

Priority
IOTask ：1

ServiceTask ：30

Adapter

Device Type 12

Maximum number of

communication data

Output:508byte， Input:504byte (Recommended is 128

bytes for output and 128 bytes for input)

Minimum communication

cycle
50ms

Task Interval
IOTask ：25ms

ServiceTask ：20ms

Priority
IOTask ：1

ServiceTask ：30

Corresponding CIP class

object

Identity Object

Message Router Object

Assembly Object

Connection Manager Object

TCP/IP Interface Object

EtherNet Link Object

Configurable data types

BYTE （1byte）

WORD （2byte）

DWORD （4byte）

REAL （4byte）

Big （A set of BYTE type data for the maximum

number of communication data）

EtherNet/IP task is generated automatically when EtherNet/IP device is added. Do not

change the priority of automatically generated tasks.

It is not possible to execute the scanner function and the adapter function at the same

time on one S200.

EtherNet/IP Communication function

85

6.2.2. Adapter setting procedure

6.2.2.1. Adapter addition procedure

Describes the procedure for adding an adapter. Use "PLC standard project" as a template.

1. Right-click "Device" and select "Add Device…".

Fig 6.18 Add Device

2. The Add Device window will open. Double-click on "Ethernet".

Fig 6.19 Add Device window

Communication function EtherNet/IP

86

3. With "Ethernet" selected, double-click "EtherNet/IP Adapter".

Fig 6.20 Add Adapter

4. Add "EtherNet/IP Module" with "EtherNet_IP_Adapter" selected.

Fig 6.21 Add Module

EtherNet/IP Communication function

87

6.2.2.2. Ethernet settings

You can open the setting screen by double-clicking "Ethernet" in the device tree. The

following items can be set on the Ethernet setting screen.

Fig 6.22 Ethernet setting screen

Item Detail

Network Interface Set the name of the interface (ethernet) to be used.

IP Address Set the IP address currently set to ETHERNET port.

Subnet Mask Set the Subnet Mask currently set to ETHERNET port.

Default Gateway Set the Default Gateway currently set to ETHERNET port.

Adjust Operating

System Settings

Unavailable for manufacturer maintenance.

If the target S200 is selected by network scan, you can set all items automatically by

selecting "Browse..." and selecting "ethernet".

Communication function EtherNet/IP

88

6.2.2.3. Adapter settings

Double-click the device tree “EtherNet_IP_Adapter” to open the adapter settings screen. The

following items can be set on the adapter setting screen.

Fig 6.23 Adapter setting screen

Item Detail

Vendor Name Vendor name set in EDS file (do not change from the initial setting)

Vender ID Vendor ID set in EDS file (do not change from the initial setting)

Product Name Product Name set in EDS file (do not change from the initial setting)

Product Code Product Code set in EDS file (do not change from the initial setting)

Major Revision Major Revision set in EDS file (do not change from the initial setting)

Minor Revision Minor Revision set in EDS file (do not change from the initial setting)

Install to Device

Repository…

Install the adapter to the device repository with the settings you have made.

Export EDS

File…

You can output an EDS file that reflects the current settings.

The module settings performed in "6.2.2.4Module settings" are also reflected.

*Please do not change the default settings for vendor name, vendor ID, product name,

product code, major revision, and minor revision.

EtherNet/IP Communication function

89

6.2.2.4. Module settings

You can open the module setting screen by double-clicking "EtherNet_IP_Module" in the

device tree.

【Assemblies】

The Assembly tab allows you to set the data types to use.

Fig 6.24 Assemblies tab

【EtherNet/IP Module I/O Mapping】

The EtherNet/IP Module I/O Mapping tab allows you to assign variables to cyclically updating

data on EtherNet/IP. The allocated variables can be used within the program as global

variables.

Fig 6.25 EtherNet/IP Module I/O Mapping tab

Communication function EtherNet/IP

90

6.2.3. CIP object

The CIP objects mainly used in the EtherNet/IP adapter of this S200 are listed below.

6.2.3.1. Identity Object (Class Code : 0x01)

【Supported service code】

Service code Name Description Instance ID

0x01 Get_Attributes_All Get attribute value. 0x01

0x0E Get_Attribute_Single Returns the contents of the specified

attribute.
0x01

0x05 Reset Reset EtherNet/IP communication. 0x01

【Instance Attribute (Instance ID : 0x01)】

Attr. ID Name Data Type Access Description

1 Vendor ID UINT Read Only
Manufacturer identification

(Default value：179)

2 Device Type UINT Read Only

Indication of general type of

product

(Default value：12)

3 Product Code UINT Read Only

Identification of the particular

product

(Default value

SMC200-A：120)

4

Revision STRUCT of:{ Read Only Revision

↳Major Revision UINT Read Only
Major Revision

(Default value：1)

↳Minor Revision USINT } Read Only
Minor Revision

(Default value：1)

5 Status WORD Read Only Current status

6 Serial Number UDINT Read Only

Serial number

(the value after the third octet

of the MAC address)

7 Product Name STRING Read Only

Product name

(Default value

Sanyodenki_ SMC200-A)

EtherNet/IP Communication function

91

6.2.3.2. TCP/IP Interface Object (Class Code : 0xF5)

【Supported service code】

Service code Name Description Instance ID

0x0E Get_Attribute_Single Returns the contents of the specified

attribute.
0x00, 0x01

0x10 Set_Attribute_Single Modifies a single attribute. 0x01

【Class Attribute (Instance ID : 0x00)】

Attr. ID Name Data Type Access Description

1 Revison UINT Read Only
Revision of the object

(Default value：4)

【Instance Attribute (Instance ID : 0x01)】

Attr. ID Name Data Type Access Description

1 Status DWORD Read Only Interface status

2
Configuration

Capability
DWORD Read Only

Interface capability flags

(Fixed value：0x20)

3
Configuration

Control
DWORD Read Only

Interface S200 flags

(Fixed value：0x00)

4

Physical Link Object STRUCT of:{ Read Only Path to physical link object

↳Path size UINT Read Only Size of Path

↳Path Padded EPATH } Read Only
Logical segments identifying

the physical link object

5

Interface

Configuration
STRUCT of: { Read Only TCP/IP network interface config

↳IP Address UDINT Read Only IP address

↳Network Mask UDINT Read Only Network mask

↳Gateway Address UDINT Read Only Default gateway

↳Name Server UDINT Read Only Primary name server

↳Name Server 2 UDINT Read Only Secondary name server

↳Domain Name UDINT } Read Only Default domain name

6 Host Name STRING Read Only
Host name

(Fixed value：SMC200)

13
Encapsulation

Inactivity Timeout
UINT Read/Write

Number of seconds of inactivity

before TCP connection is

closed. Maximal value is 3600.

(Default value：120)

Communication function EtherNet/IP

92

6.2.3.3. Assembly Object (Class Code : 0x04)

【Supported service code】

Service

code
Name Description Instance ID

0x0E Get_Attribute_Single Returns the contents of the specified

attribute.
0x100, 0x101

【Instance Attribute】

 ■Output assembly (Instance ID : 0x100)

Attr. ID Name Data Type Access Description

3 Output assembly
By setting module

data type
Read Only

Current value of write only

data

■Input assembly (Instance ID : 0x101)

Attr. ID Name Data Type Access Description

3 Input assembly
By setting module

data type
Read Only

Current value of read only

data

EtherNet/IP Communication function

93

6.2.4. Scanner setting procedure

6.2.4.1. Add scanner procedure

Describes the procedure for adding a scanner. Use "PLC standard project" as a template.

1. Right-click "Device" and select "Add Device…".

Fig 6.26 Add Device

2. The Add Device window will open. Double-click on "Ethernet".

Fig 6.27 Add Device window

Communication function EtherNet/IP

94

3. Add "EtherNet/IP Scanner" with "Ethernet" selected.

Fig 6.28 Add Scanner

6.2.4.2. Scanner settings

The setting screen can be opened by double-clicking "EtherNet_IP_Scanner" in the device

tree.

If "Automatically-reestablish Connections" is checked, communication is automatically

reestablished when communication with the adapter at the connection destination is broken.

Fig 6.29 Scanner setting screen

EtherNet/IP Communication function

95

6.2.4.3. Add remote adapter

The following is the procedure for adding a remote adapter.

1. Right-click “EthernNet_IP_Scanner” and select “Add Device…”.

Fig 6.30 Add Device

2. The add device window will open. Add "Generic EtherNet/IP device".

Fig 6.31 Add Device window

Communication function EtherNet/IP

96

6.2.4.4. Remote Adapter Configuration

The setting screen of the remote adapter is displayed by double-clicking "Generic

EtherNet/IP device" in the device tree. The following items can be set on the remote

adapter setting screen.

【General】

Fig 6.32 General tab

Item Detail

IP Address Set the IP address of the connection destination adapter.

EtherNet/IP Communication function

97

【Connections】

The connection tab has the following setting items.

Click "Add Connection..." or double-click the name of an existing connection to display the

Edit Connection window.

Fig 6.33 Connections tab

You can set the following items in the Edit connection window.

Fig 6.34 Edit connection window

*Basically, the contents of the EDS file are automatically reflected.

Connection Path Settings:

 Item Detail

Automatically

generated path

A connection path is automatically generated from the values of the Constituting

Assembly, Consuming Assembly, and Producing Assembly.

User-defined path The connection path is specified manually in the corresponding input field.

Path defined by

symbolic name

Paths are specified by symbolic names.

Condition: Device must support symbolic connect path.

Communication function EtherNet/IP

98

General Parameters:

Scanner to Target (Output):

Item Detail

O-->T size (bytes) Amount of data from scanner to adapter

Proxy Config size (bytes) Size of proxy configuration data

Target Config size (bytes) Size of adapter configuration data

Connection type

Multicast: A network connection is established. Connection data can be

received by multiple consumers.

Unicast: A network connection is established. Connection data can only

be received by one consumer

Null: No network connection established.

Connection priority
Conflicts can occur when two scanners use different priorities for an

adapter. Adjusting the connection priority solves this problem.

Fixed / Variable For details, check the specifications of CIP Volume 1 and Volume 2.

Transfer format Not compatible

Inhibit time (ms) Not compatible

Heartbeat multiplier Not compatible

Target to Scanner (Input):

Item Detail

T-->O size (bytes) Amount of data from scanner to adapter

Connection type

Multicast: A network connection is established. Connection data can be received

by multiple consumers.

Unicast: A network connection is established. Connection data can only be

received by one consumer

Null: No network connection established.

Connection

priority

Conflicts can occur when two scanners use different priorities for an adapter.

Adjusting the connection priority solves this problem.

Fixed / Variable For details, check the specifications of CIP Volume 1 and Volume 2.

Transfer format Not compatible

Inhibit time (ms) Not compatible

Item Detail

Connection Path Set the IP address of the adapter to connect to.

Trigger type

Cyclic: Data exchange takes place cyclically at intervals set by the RPI.

Change of State: Data is automatically exchanged when the scanner output or

adapter input changes.

Application: Not Implemented

Transport type For details, check the specifications of CIP Volume 1 and Volume 2.

RPI (ms)

Request Packet Interval.

The time interval (in ms) at which the sending application requests the target

application to send data. This value must be a multiple of bus cycle tasks.

Timeout multiplier
If a device fails, there is a time delay (RPI * timeout multiplier) before the device

state switches to 'error'.

EtherNet/IP Communication function

99

6.2.5. Explicit message communication function block

EtherNet / IP has two communication functions. There are Implicit message communication,

which communicates at a fixed cycle, and Explicit message communication, which

communicates at an arbitrary timing.

Implicit message communication is a function that performs data communication in the

communication cycle set by RPI (Requested Packet Interval). Communication settings can

be made on the "Connection" tab in "6.2.4.4Remote Adapter Configuration".

Explicit message communication is a function that sends and receives data to and from a

specified node at any time. Communication can be performed using the Explicit message

communication function block.

This function block supports only Explicit message communication from the scanner.

Therefore, set the device name of the destination node in the input variable

itfEtherNetIPDevice.

6.2.5.1. Apply_Attributes

This function block is used for calling the “Apply_Attributes” service of a specific instance of

a CIP object.

Fig 6.35 Apply_Attributes

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

Communication function EtherNet/IP

100

6.2.5.2. NOP

This function block is used for calling the NOP service of a specific instance of a CIP object.

Fig 6.36 NOP

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

6.2.5.3. Reset

This function block is used for calling the reset service of a specific instance of a CIP object.

Fig 6.37 Reset

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

EtherNet/IP Communication function

101

6.2.5.4. Start

This function block is used for calling the “Start” service of a specific instance of a CIP object.

Fig 6.38 Start

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

6.2.5.5. Stop

This function block is used for calling the “Stop” service of a specific instance of a CIP object.

Fig 6.39 Stop

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

Communication function EtherNet/IP

102

6.2.5.6. Get_Attributes_All

This function block is used for querying the attribute of a specific instance of a CIP object.

Fig 6.40 Get_Attributes_All

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

pData POINTER TO BYTE Data buffer

udiDataSize UDINT Size of buffer

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

udiReceivedDataSize UDINT Size of the received data

EtherNet/IP Communication function

103

6.2.5.7. Get_Attribute_Single

Use this function block for querying the attribute of a specific instance of a CIP object.

Fig 6.41 Get_Attributes_ Single

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

wAttribute WORD Attribute the services is addressed to. Leave 0

if this service does not address an attribute.

pData POINTER TO BYTE Data buffer

udiDataSize UDINT Size of buffer

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

udiReceivedDataSize UDINT Size of the received data

Communication function EtherNet/IP

104

6.2.5.8. Set_Attributes_All

This function blocks is used for setting the attribute of a specific instance of a CIP object.

Fig 6.42 Set_Attributes_All

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

pData POINTER TO BYTE Error identification

udiDataSize UDINT Size of the received data

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

EtherNet/IP Communication function

105

6.2.5.9. Set_Attribute_Single

This function block is used for setting the attribute of a specific instance of a CIP object.

Fig 6.43 Set_Attributes_ Single

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

wAttribute WORD Attribute the services is addressed to. Leave 0

if this service does not address an attribute.

pData POINTER TO BYTE Data buffer

udiDataSize UDINT Size of buffer

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

Communication function EtherNet/IP

106

6.2.5.10. Generic_Service

This function block performs a generic service at an EtherNet/IP Adapter.

Fig 6.44 Generic_Service

VAR_INPUT

xExecute BOOL Rising edge: Starts the execution of the FB.

itfEtherNetIPDevice IEtherNetIPService EtherNet/IP Device which implements the

EtherNet/IP Services interface

eClass CIPClass Class which shall perform the service

dwInstance DWORD Instance which shall perform the service

(0: Class level, 1..x: Instance level)

wAttribute WORD Attribute the services is addressed to. Leave 0

if this service does not address an attribute.

pWriteData POINTER TO BYTE Data to write to the EtherNet/IP Adapter.

Leave 0 if no data should be sent to the

EtherNet/IP Adapter.

udiWriteDataSize UDINT Size of data to write to the EtherNet/IP Adapter.

Leave 0 if no data should be sent to the

EtherNet/IP Adapter.

pReadData POINTER TO BYTE Data expected to receive from the EtherNet/IP

Adapter. Leave 0 if no data is expected to be

received from the EtherNet/IP Adapter

udiReadDataSize UDINT Size of data expected to receive from the

EtherNet/IP Adapter. Leave 0 if no data is

expected to be received from the EtherNet/IP

Adapter.

VAR_OUTPUT

xDone BOOL Function block execution complete

xBusy BOOL The FB is not finished

xError BOOL Signals that an error has occurred within the

function block

eError ERROR Error identification

udiReceivedDataSize UDINT Size of the received data

For details on each service, refer to the specifications of the EtherNet/IP adapter to be

connected.

OPC UA Communication function

107

6.3. OPC UA

This S200 has OPC UA server function. OPC UA is a data exchange standard for safe and

reliable industrial communication that enables data exchange between multi-vendor products

and across different operating systems.

The OPC UA setting is made with the symbol configuration object. The procedure for using

OPC UA communication is described below.

1. Create symbol configuration object

Right-click on "Application" and select "Add Object" → "Symbol Configuration" to add

the symbol configuration object. Support for object name and OPC UA function can be

set when adding, please enable support and set arbitrary name.

Fig.6.45 Symbol Configuration Object

2. Double clicking on the created symbol configuration object opens the following symbol

configuration editor.

Fig.6.46 symbol configuration editor

Communication function OPC UA

108

3. Variable setting for remote access

The symbol configuration editor displays a list of variables included in the application.

Use the check box to the left of the variable name to enable / disable remote access.

If you enable remote access, you can change the access rights for the symbol by clicking

the symbol in the access right column.

The list of access rights symbols is shown below.

Symbol Detail

Read only

Write only

Readable / Writable

This completes the OPC UA setting. By downloading the project, you can access the

specified variables from the OPC UA client.

When connecting from the OPC UA client, you can connect by using the URL or IP

address and port number output in the log.

File sharing service Communication function

109

6.4. File sharing service

The S200 implements an FTP server and a Samba server as file sharing services. By

enabling each server from the Web application, you can share files in the user area.

By enabling the file sharing service, you can perform the following operations on a PC where

development environment is not installed.

⚫ Confirmation/acquisition of files generated in the PLC application.

⚫ Confirmation and acquisition of PLC application logs.

⚫ Get status report.

⚫ Operation of connected media (USB memory, microSD).

Fig.6.47 File sharing

User area

App Data

development PC
controller

Ethernet
or

miniUSB

Communication function File sharing service

110

6.4.1. Enable server from web application

You can control each server from the "File sharing" tab of the web application.

Fig.6.48 Enable server from web application

Item Detail

Status Show the current service running state

RUN button Start server

STOP button Stop server

Password button Show server password change window

The status of each server at factory shipment is as follows.

 FTP server : inactivate

Samba server : activate

Usernames and passwords are sent in plain text with FTP. We recommend disabling the

FTP server if OT security is important.

6.4.2. Directory structure of user area

The structure of the user area is shown below.

Directory File path in PLC application Detail

/ - User area top directory

∟sancontrol ./ Default path for PLC application

∟ PlcLogic ./PlcLogic Directory where PLC application is stored

∟data $DATA$ Data storage area (20GB)

∟report $REPORT$ Directory for storing status reports

∟ tmp - Volatile directory

∟ media $MEDIA$ Media links

∟ usb_p_ $MEDIA$/usb_p_ Link destination of USB memory

∟ microsd_p_ $MEDIA$/microsd_p_ Link destination of microSD

∟ log - Directory containing CODESYS runtime logs

∟ image - Storage destination for still images saved by

camera control

File sharing service Communication function

111

6.4.3. Connection method

6.4.3.1. FTP

You can connect to the FTP server using the command prompt that is standard installed in

Windows. When connecting, you need to enter the connection destination (host name or IP

address), user name, and password in the red frame in the figure below.

Fig.6.49 FTP server connection

User name Password

ftp ftp (default value)

6.4.3.2. Samba

You can connect to the Samba server from File Explorer. You can access it by entering

“\\<hostname>" or IP address in the explorer path setting field.

Fig.6.50 Samba server connection

To access the shared directory, you need to enter the following user ID and password.

Fig.6.51 Samba server login screen

User ID Password

sanmotion sanmotion (default value)

Communication function Wireless communication

112

6.5. Wireless communication

Wireless functionality can be added by connecting a wireless adapter 3A (model number:

SMC-USBW-01) to the USB port of the S200. For details, please refer to "M0020996

Wireless Adapter 3A Instruction Manual (Combination with S200 Series)".

!

WARNING!

• Do not use this function when someone with a cardiac pacemaker is nearby.

• Wireless is greatly affected by the surrounding radio wave environment, such as noise and

crosstalk between users using the same frequency band, so communication may become

unstable. Therefore, use the wireless communication function for purposes such as monitoring

or file operations unrelated to motion control.

!

CAUTION!

• This function uses radio waves in the 2.4 GHz frequency band. Radio wave interference may

occur when using this product near the following devices or radio stations.

・Industrial/scientific/medical equipment (microwave ovens, wireless LAN equipment, security

equipment, cardiac pacemakers, etc.)

・Radio stations that do not require a license (specific power-saving radio stations)

・Radio stations requiring a license (on-premises radio stations for mobile identification used in

factory production lines, amateur radio stations)

• Do not use near a microwave oven, in a place where static electricity or radio interference

occurs, or in a room shut off by a metal door. Radio waves may not reach depending on the

usage environment.

I/O control programming Control programming

113

7. Control programming

7.1. I/O control programming

Create an I / O control program. Use "PLC standard project" as a template.

7.1.1. I/O assignment

Assign variable names to the I/O mapping table. You can use this variable name in

subsequent programming. Follow the procedure below to make the setting.

1. Double-click "Device (SMC200-A)" and select "Device I/O mapping".

Fig.7.1 Device I/O mapping screen

2. Enter the following variable name in the variable field.

Fig.7.2 Setting variable names to Device I/O

Control programming I/O control programming

114

7.1.2. Creation of I/O control program

Create a simple program that uses the assigned variable name. Please follow the procedure

below. In addition, in order to check the operation after program creation, it is necessary to

turn digital input on and off. Refer to "Hardware Manual" for wiring method.

1. Please open "PLC_PRG". And describe the following in the mounting section.

【Implementation section】

DO0 := DI0 AND DI1;

DO1 := DI2 AND DI3;

DO2 := DI4 AND DI5;

DO3 := DI6 AND DI7;

DO4 := DI8 AND DI9;

DO5 := DI10 AND DI11;

DO6 := DI12 AND DI13;

DO7 := DI14 AND DI15;

2. After creating the program, click to log in.

3. After login it will be like the following screen. Please click the operation and execute the

program.

Fig.7.3 Screen after login

I/O control programming Control programming

115

4. When the program is normally executed, the following screen will appear.

Fig.7.4 Screen after driving

5. Check the operation of the program. For the input 2 points of the program created this

time, 1 output point is set to TRUE. Please input the signal to the digital input and confirm.

Fig.7.5 Screen during program execution

Control programming Manual drive program

116

7.2. Manual drive program

Please open the "Motion Standard project" to create a program to control the servo amplifier

connected to the EtherCAT port of SMC200-A.

This sample program uses the automatic variable declaration function.

For details of the function, please refer to "4.8.4 Input Assistant function".

7.2.1. Sample program summary

Create a program to perform JOG operation.

In the following description, we will assume the case where it is combined with SMC200-A

and Sanyo Denko servo amplifier RS3 series (thereafter RS3). Please connect RS3 and

S200 with reference to the following figure.

Fig 7.6 Connection diagram with RS3

R
S
T

Regenerative resistor

Servo Motor Servo Amplifier Controller

Development
PC

Manual drive program Control programming

117

7.2.2. Configuration

7.2.2.1. Add slave

Add and configure slaves. There are two ways to add slaves. It is a method to add manually

and a method to search for and add slaves connected to the master.

【Manual setting】

1. Right-click "EtherCAT_Master_SoftMotion (EtherCAT Master Soft Motion)" and click

"Add Device ...".

Fig.7.7 Add device

2. Select the slave to use and click "Add Device". Please close this window after adding

the slave.

Fig.7.8 Add Device Window

Control programming Manual drive program

118

【Search setting】

Search and add the slave connected to the master. Please add according to the following

procedure. For the S200 to be used for the first time, it is possible to search the slave by

adding the EtherCAT master and logging in once and logging out. This is because a stack is

not created unless an EtherCAT master is added.

1. Right-click "EtherCAT_Master_SoftMotion (EtherCAT Master Soft Motion)" and select

"Search for devices ...".

Fig.7.9 Scan for devices

2. Since the slave connected to the master is displayed, select the slave to be added and

click "Copy to Project".

Fig.7.10 Scan Device window

Manual drive program Control programming

119

7.2.2.2. Add axis

Add axes. Please add according to the following procedure.

1. Right-click on the added slave ("SanyoDenki_RS3_EtherCAT") and click "Add

SoftMotion CiA 402 Axis".

Fig.7.11 Add axis

2. Change the name of the axis. The name of the axis can be changed to arbitrary name,

and you can use this name in subsequent programming. Please select again the axis

you want to change and click again. Please enter an arbitrary name and press the Enter

key.

Fig.7.12 Change axis name

3. If you change the axis name, a window will be displayed asking if you want to adapt the

object name change for all references in the project. Please click "Yes".

Fig.7.13 Automatic Refactoring: Rename window

4. A list of matched objects will be displayed, so click "OK".

Fig.7.14 Refactor window

Control programming Manual drive program

120

7.2.2.3. Axis settings

The following items can be set in the axis setting. The axis setting screen is displayed by

double clicking on the added slave. This section explains the setting items on the "General"

and "Scaling / Mapping" screens.

【General】

In the " General " tab you can set the parameters of the axis.

Set the axis type to "Modulo" this time.

Fig.7.15 Axis setting screen (general)

Item Detail

Virtual mode The drive is replaced by a simulation that is similar to a virtual drive unit.

Modulo The drive turns endlessly without limiting the traversing range

Finite The drive has a fixed work area

Modulo settings Sets the modulo maximum value.

(Appears when the axis type is Modulo.)

Software limits Position values are restricted by the lower limit Negative and an upper

limit Positive.

(Appears when the axis type is Finite)

Software error reaction Deceleration value when reaching the limit switch.

Dynamic limits It applies to CNC and robot control.

Velocity ramp type Defines the velocity profile for motion-generating single-axis and

master/slave modules.

Trapezoid, Sin2, Quadratic, Quadratic (smooth)

Identification Integer identifier. Should be unique for each drive. For example, this

identifier is used in the PLC log in order to identify the drive when an

error occurs.

Position lag supervision A drag error is detected when the difference between the set position

and the compensated actual position exceeds the drag error limit.

Manual drive program Control programming

121

【Scaling/Mapping】

On the "Scaling / Mapping" tab, you set the user unit system.

In this sample program, we assume an axis with an encoder resolution of 17 bits. At this time,

set the “increments” in the axis parameter to "131072". Also, set the “unit in application“ to

"360".

Fig.7.16 Axis setting screen (Scaling / Mapping)

Item Detail

Motor Type Set the type of connected motor.

When the linear type is set, the only scaling setting item is

"increments <=> units in application".

Invert direction The direction of rotation is reversed. The motor receives the specified

values with inversed signs.

increments<=>

motor turns

Number of increments that correspond to a given number of motor rotations.

If the number of pulses per revolution is 131072 (17 bits), set increment to

131072 and motor rotation to 1.

motor turns <=>

gear output turns

Number of motor rotations that correspond to a given number of gear output

rotations.

If the reduction ratio is 1/10, please set the motor rotation to 10 and the gear

output rotation to 1.

gear output turns

<=>

units in application

Number of gear output rotations that correspond to a unit in the application.

For one gear revolution at 360 degrees, set the gear output rotation to 1 and

the unit within the application to 360.

Automatic mapping IEC parameters that affect the drive are automatically mapped to the

corresponding inputs and outputs of the device.

Control programming Manual drive program

122

 CAUTION

• Unexpected behavior may occur if the parameter "Increments" is set differently from the device.

Set the following values correctly. For details, refer to the instruction manual for each driver.

Servo amplifier : Encoder resolution

(If the scale setting is changed, resolution after scale conversion)

PB Driver : Value set for object 0x6092:01 'feed'

If an object that is not defined in the object dictionary, such as a dummy object, is mapped

to PDO, the automatic mapping function may not be associated correctly. In that case, do

not use dummy objects or associate them manually.

Manual drive program Control programming

123

7.2.2.4. The state diagram

The initial state of an axis is disabled. State transitions due to issued motion commands are

shown by full arrows. Dashed arrows are used for state transitions that are caused by the

system

Motion commands listed above the states transit the axis to the corresponding state. In the

states DiscreteMotion, ContinuousMotion, and SynchronizedMotion these motion

commands may also be issued when the axis is already in the according motion state.

Fig.7.17 State diagram of an axis

Note. Detail

1 From any state. An error in the axis has occured.

2 From any state. MC_Power.Enable = FALSE . There is no error in the axis.

3 MC_Reset and MC_Power.Status = FALSE

4 MC_Reset and MC_Power.Enable=TRUE, MC_Power.bRegulatorOn=TRUE,

MC_Power.bDriveStart=TRUE and MC_Power.Status = TRUE

5 MC_Power.Enable=TRUE, MC_Power.bRegulatorOn=TRUE,

MC_Power.bDriveStart=TRUE and MC_Power.Status = TRUE

6 MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

Control programming Manual drive program

124

7.2.3. Sample program

Jog operation is performed using MC_StartupDrive. Follow the procedure below to perform

jog operation. SMC_StartupDrive is a set of representative function blocks (FB) below. In

addition, please refer to the help for explanation of each FB.

1. Select the program "Motion_PRG". Add FB. Click the mounting part and press the F2

key.

Fig.7.18 Program creation screen

2. The input assistant window will be displayed. Click "Function Blocks" and select

"SMC_StartupDrive" in "SM3_Basic" and click OK.

Fig.7.19 Input assistant window

Manual drive program Control programming

125

3. Set the name of FB. Please enter "StartUp Drive" and click "OK".

Fig.7.20 Automatic declaration window

4. Allocate the axis to be controlled to FB. Please set the axis to FB input.

Fig.7.21 Assignment of axes to FB

5. After setting please click on to login. After login it will be like the following screen.

Please click the operation and execute the program.

Fig.7.22 Screen after login

Control programming Manual drive program

126

6. When the program is normally executed, the following screen appears.

Fig.7.23 Screen after execution

7. Servo on. Please click on the "+" to the left of SMC_StartupDrive displayed in the

declaration section and expand it. Next, expand MC_Power. The following screen will

be displayed. For MC_Power, refer to “9.2.1.1 MC_Power”.

Fig.7.24 After declaration department's MC_Power expansion

Manual drive program Control programming

127

8. Set the value. Click "Set value" column of "bRegulatorOn" and "bDriveStart" and set it

to TRUE. After that, by pressing Ctrl + F7, the value is set to the FB input and the

servo is turned on.

Fig.7.25 Enter value

9. When servo is turned on, the screen will look like the following. MC_Power.Status =

TRUE when servo is on.

Fig.7.26 Enter value

Control programming Manual drive program

128

10. Set the speed and acceleration / deceleration of the jog operation. Please expand

MC_Jog. Enter the following values in the "Set value" column of "Velocity",

"Acceleration", "Deceleration" and press Ctrl + F7. For MC_Jog please refer to

"9.2.1.10 MC_Jog”.

Fig.7.27 Parameter setting of MC_Jog

11. Perform jog operation. When MC_Jog.JogForward = TRUE, forward rotation is

performed, and if MC_Jog.JogBackward = TRUE, reverse rotation will occur. Set

MC_Jog.JogForward = FALSE and MC_Jog.JogBackward = FALSE to stop.

Manual drive program by visualization Control programming

129

7.3. Manual drive program by visualization

Visualization to create the suitable user interface for your application. You link the

visualization to the application variables and in this way they can animate and display data.

When creating a visualization and an application, you use common functions, for example,

as library and source code management or find/replace throughout the project. The

visualization can be accessed also from general Web browser（Web Visualization）.

Fig.7.28 Visualization

7.3.1. Sample program summary

The procedure for creating a sample program that controls the single axis JOG operation

project from the visualization is described below. Add the following information to

"Motion_PRG".

The visualization configuration of the sample program is as follows.

Fig 7.29 Sample visualization configuration

development PC

Tablet

gateway
(Router)

Browser appl

development tools

Web browser

monitor PC

control ler

Web visualization function

Monitor section：

Element group for monitoring

current position and current speed

Control section

Element group for motion control

Control programming Manual drive program by visualization

130

7.3.2. Configuration

Right-click on "SoftMotion General Axis Pool" and select "Add Device" → "virtual drives"

→ "SM_Drive_Virtual" to add axis objects. Since you can set the object name when

adding, please set it as "Drive 1".

Fig.7.30 Add virtual axis

7.3.3. Sample program

Please add the following to "PLC_PRG". The program described here is the motion control

execution unit, and control is done from the visualization.

【Declaration section】

PROGRAM PLC_PRG

VAR

 Axis1_SonFlag : BOOL;

 Axis1_Power : MC_Power;

 Axis1_Home : IoSanyoDevice.SanHome;

 Axis1_Jog : MC_Jog;

END_VAR

【Implementation section】

Axis1_Power(Axis:= Drive1, Enable:= TRUE,

 bRegulatorOn:= Axis1_SonFlag, bDriveStart:= Axis1_SonFlag);

Axis1_Home(Axis:= Drive1);

Axis1_Jog(Axis:= Drive1);

Manual drive program by visualization Control programming

131

7.3.4. Creation of visualization screen

7.3.4.1. Add a visualization

The usage of visualization is described below.

1. Create a visualization object

Right-click on "Application" and select "Add Object" → "Visualization" to add

visualization object. You can set the object name when adding, so please set any name.

Fig.7.31 Visualization object

2. Double-click on the created visualization object, the following visualization editor opens.

Fig.7.32 Visualization editor

Editor window Tool box

Control programming Manual drive program by visualization

132

3. Create a visualization screen by dragging Element (figure, button, etc.) in the tool box

to the editor window.

When you add an Element, the Element Properties window will be displayed in the

Toolbox. In the Properties window, you can set the color and size of Element, the

variables to assign, and so on.

Fig.7.33 Property window

7.3.4.2. Creation of monitor section of visualization

The monitor consists of eight Elements.

Fig.7.34 Element structure of monitor unit

No. Detail

① Background element

② Title element

③ Position display label

④ Velocty display label

⑤ Position unit display label

⑥ Velocty unit display label

⑦ Current position monitor element

⑧ Current Velocty monitor element

①
②

③

④

⑤

⑥

⑦

⑧

Manual drive program by visualization Control programming

133

The contents of each setting are described below.

【①Background Element】

Item Detail

Element Rectangle（Tag: Basic）

Colors―Normal state―Fill color LightBlue

【②Title element】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text Drive State

【③～⑥Each label】

Item Detail

Element Label（Tag: Common controls）

Texts―Text See Figure 5.11

Text properties―Font Size：15

【⑦Current position monitor element】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text %.3f

Text properties―Font Size：15

Text variables―Text variable Drive1.fActPosition

【⑧Current Velocty monitor element】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text %.3f

Text properties―Font Size：15

Text variables―Text variable Drive1.fActVelocity

A character string that is output in the visualization can include the placeholder % for a

variable. At runtime, the placeholder is replaced by the current value of the variable in the

defined format.

 Printing a variable as a decimal number %d

 Printing a variable as an unsigned decimal number %u

 Printing a variable as an unsigned hexadecimal number %x

 Printing a character string %s

 Printing a Real number %f

How to display after the decimal point in real number display.

 ％．< Specify the number of digits >f

 Example：If you want to display the third decimal place, please write “%. 3f”.

Control programming Manual drive program by visualization

134

7.3.4.3. Creation of control section of visualization

For details on how to use Label Element, refer to How to create monitor section.

Fig.7.35 Element structure of control unit

No. Detail

① Servo on / off button

② Servo on status lamp

③ Homing button

④ Homing status lamp

⑤ Element for JOG velocity setting

⑥ Element for JOG acceleration setting

⑦ Element for JOG deceleration setting

⑧ JOG forward button

⑨ JOG backward button

The contents of each setting are described below.

【①Servo on / off button】

Item Detail

Element Power switc（Tag: Lamps/Switches/images）

Variable PLC_PRG.Axis1_SonFlag

Background―Image Green

【②Servo on status lamp】

Item Detail

Element Lamp（Tag: Lamps/Switches/images）

Variable PLC_PRG.Axis1_Power.Status

Background―Image Green

① ② ③ ④

⑤

⑥

⑦

⑧ ⑨

Manual drive program by visualization Control programming

135

【③Homing button】

Item Detail

Element Push switch（Tag: Lamps/Switches/images）

Variable PLC_PRG.Axis1_Home.Execute

Background―Image Gray

【④Homing status lamp】

Item Detail

Element Lamp（Tag: Lamps/Switches/images）

Variable PLC_PRG.Axis1_Home.Done

Background―Image Green

【⑤Element for JOG velocity setting】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text %.3f

Text properties―Font Size：15

Text variables―Text variable PLC_PRG.Axis1_Jog.Velocity

Inputconfiguration―OnMouseClick―Write a Variable

Input type Text input with limits

Min 0

Max 3600

【⑥Element for JOG acceleration setting】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text %.3f

Text properties―Font Size：15

Text variables―Text variable PLC_PRG.Axis1_Jog.Acceleration

Inputconfiguration―OnMouseClick―Write a Variable

Input type Text input with limits

Min 0

Max 3600

【⑦Element for JOG deceleration setting】

Item Detail

Element Rectangle（Tag: Basic）

Texts―Text %.3f

Text properties―Font Size：15

Text variables―Text variable PLC_PRG.Axis1_Jog.Deceleration

Inputconfiguration―OnMouseClick―Write a Variable

Input type Text input with limits

Min 0

Max 3600

Control programming Manual drive program by visualization

136

【⑧JOG forward button】

Item Detail

Element Button（Tag: Common controls）

Clolors―Alarm color Yellow

Texts―Text ＜

Text properties―Font Size：15

Color variables―Toggle color PLC_PRG.Axis1_Jog.JogBackward

Inputconfiguration―Toggle―Variable PLC_PRG.Axis1_Jog.JogBackward

【⑨JOG backward button】

Item Detail

Element Button（Tag: Common controls）

Clolors―Alarm color Yellow

Texts―Text ＞

Text properties―Font Size：15

Color variables―Toggle color PLC_PRG.Axis1_Jog.JogForward

Inputconfiguration―Toggle―Variable PLC_PRG.Axis1_Jog.JogForward

This completes the creation of the visualization screen. By downloading the project, you

will be able to control motion from the visualization.

Fig.7.36 Visualization control screen

Manual drive program by visualization Control programming

137

7.3.5. Web Visualization

In the Web Visualization, you can access the visualization screen from a general-purpose

Web browser such as PC or tablet.

Please use HTML 5 compatible web browser.

If the Web visualization function is enabled, the following output is made in the log.

Fig.7.37 Web visualization log

To access from the web browser please set the following URL.

http: // [IP address]: [8080] / [Name of .htm file]

If logs are not output, please check if there is a Web visualization object in the device tree. If

you do not do it, right click on "Visualization Manager" and select "Add Object" → "Web

Visualization" in order to add Web Visualization Object.

Control programming Manual drive program by visualization

138

With the Web Visualization Object you can configure the Web Visualization function.

Fig.7.38 Web visualization object

Item Detail

Start visualization Do not change from the default "Visualization".

Name of .htm file Base URL of the web page. The URL is also specified as the address

in the web browser.

Example: http://localhost:8080/webvisu.htm

Update rate (ms) Refresh rate (in milliseconds) in the web browser

Default communication

buffer size

Default size for communication buffer (in bytes). Defines the

maximum available memory for data transfer between the web client

and the web server.

Scaling options Fixed ：Fixed size of the visualization. The values used

are Client height and Client width.

Isotropic ：The size of the visualization is adapted to the

dimensions of the web browser, retaining the proportions of the

visualization.

Anisotropic ：The size of the visualization is adapted to the

web browser.

Antialiased drawing Antialiasing is used when drawing the visualization in the web

browser.

Default text input Touchscreen ：Text input on the WebVisu with touchscreen

Keyboard ：Text input on the WebVisu with keyboard

Single axis control program Control programming

139

7.4. Single axis control program

We prepare a program assuming the following devices as a sample program of single axis

control. Use "Motion Standard project" as a template. For the FB used in the program, refer

to "9.2.1 Function block for single axis control" or later.

7.4.1. Sample program summary

We will assume a single axis robot transport system. When the object to be transported is

placed on the table, the sensor reacts and moves to the target position (500 mm). When the

goods are removed from the table, return it to its original position.

Transport device shaft is attached to a ball screw of 10 mm lead, use it as a finite axis. The

operating range is from -10 mm to 600 mm.

Fig 7.39 Schematic diagram of the device

7.4.2. Configuration

7.4.2.1. I/O setting

In the sample program, we use two sensors (placement and removal of goods). Connect

each signal to the digital input of the S200. Also, give a variable name to the digital

input.Double-click "Device (SMC200-A)" and select "Device I/O Mapping". After that, set the

variable name as shown in the figure below.

Fig.7.40 I/O mapping setting

Control programming Single axis control program

140

7.4.2.2. Axis setting

Add the slave and axis in the same procedure as “7.2.2.1 Add slave“ and “7.2.2.2 Add axis“.

Change the name to "Drive 1".

Set the axis settings as shown below.

Fig.7.41 Transport device axis setting

7.4.3. Sample program

A list of variables used in the sample program is shown below. Add the following information

to "Motion_PRG".

【Declaration section】

Drive1_Power : MC_Power; // For servo on/off contro

Drive1_Home : IoSanyoDevice.SanHome ; // For homing

Drive1_Move : MC_MoveAbsolute; // For moving

MainStep : INT; //Main operation step management variable

Trigger : R_TRIG; // Execution trigger detection FB

In this program, separate FB execution and flag control are described. Write the execution

part of FB at the top of the program.

【Implementation section】

Drive1_Power(Axis := Drive1, Enable := TRUE);

Drive1_Home(Axis := Drive1);

Drive1_Move(

 Axis:= Drive1,

 Velocity:= 100,

 Acceleration:= 10000,

 Deceleration:= 10000);

Single axis control program Control programming

141

Describe the flag control part below the execution part.

【Implementation section】

CASE MainStep OF

 0 : (* S-ON *)

 Drive1_Power.bDriveStart := TRUE;

 Drive1_Power.bRegulatorOn := TRUE;

 IF Drive1_Power.Status THEN

 MainStep := 1;

 END_IF

 1 : (* Homing *)

 Drive1_Home.Execute := TRUE;

 IF Drive1_Home.Done THEN

 MainStep := 2;

 END_IF

 2 : (* Set Wait *)

 Trigger(CLK:= xSet);

 (* Move Start *)

 IF Trigger.Q THEN

 Drive1_Move.Execute := TRUE;

 Drive1_Move.Position := 500;

 MainStep := 3;

 END_IF

 3 : (*Move Done *)

 IF Drive1_Move.Done THEN

 Drive1_Move.Execute := FALSE;

 MainStep := 4;

 END_IF

 4 : (*Get Wait *)

 Trigger(CLK:= xGet);

 (* Move to original position *)

 IF Trigger.Q THEN

 Drive1_Move.Execute := TRUE;

 Drive1_Move.Position := 0;

 MainStep := 5;

 END_IF

 5 : (* Arrive at original position *)

 IF Drive1_Move.Done THEN

 Drive1_Move.Execute := FALSE;

 MainStep := 2;

 END_IF

END_CASE

Control programming Single axis control program

142

7.4.4. Operation check by trace

Test this sample program by trace.

Fig.7.42 Tracing the sample program

No. Detail

1 Waiting for placement of goods

2 Move to target position

3 Waiting for taking out goods

4 Move to original position

1 2 3 4 1

PTP control program Control programming

143

7.5. PTP control program

This section gives an overview of PTP control and creates a sample program. Refer to

"9.2.2 PTP control function block" or later for FB used for PTP control. Use "Motion

Standard project" as a template.

7.5.1. Sample program summary

Assume a transfer system that handles three types of workpieces with a single-axis robot. It

is necessary to prepare multiple target positions for each work. Assign and control the target

position for each switch.

After the work is placed on the table, press the work-specific switch to move the table to the

target position, stop for 2 seconds, and return to the start position.

The transfer device axis is mounted on a ball screw with a lead of 10 mm and used as a finite

axis. The work is called work A, work B and work C respectively. Each target position is 100

mm for Work A, 200 mm for Work B, and 300 mm for Work C.

Fig 7.43 Device schematic

Control programming PTP control program

144

7.5.2. Configuration

7.5.2.1. I / O setting

The I/O settings used in the sample program are shown below. These are switches for work

A, work B and work C respectively. Double-click "Device (SMC200-A)" and select "Device

I/O Mapping". After that, set the variable name as shown in the figure below.

Fig 7.44 I / O mapping setting

7.5.2.2. Add PTP control axis

Add an axis for PTP control and set it.

1. Add a slave in the same procedure as “7.2.2.1Add slave“.

2. Right-click on the added slave and click "Add SoftMotionLight CiA402 axis".

Fig 7.45 Add axis for PTP control

3. As the axis is added, change the name to "Drive 1".

PTP control program Control programming

145

7.5.2.3. Axis setting for PTP control

The following items can be set for axes for PTP control.

In this case, set the increments to 131072 and the unit in application to 10.

Do not change any other settings from the default settings.

Fig 7.46 Axis setting screen for PTP control

Item Detail

Modulo The drive turns endlessly without limiting the traversing range

Finite The drive has a fixed work area

Velocity ramp type Defines the velocity profile for motion-generating single-axis and

master/slave modules.

Trapezoid, Sin2

Invert direction The direction of rotation is reversed. The motor receives the specified

values with inversed signs. (Do not enable the "Invert direction" parameter

of the SML axis. If it is enabled, unexpected behavior may occur. If you want

to set the reversal of the rotation direction, set it on the EtherCAT slave

side)

increments<=>

motor turns

Number of increments that correspond to a given number of motor

rotations.

If the number of pulses per revolution is 131072 (17 bits), set increment to

131072 and motor rotation to 1.

motor turns <=>

gear output turns

Number of motor rotations that correspond to a given number of gear output

rotations.

If the reduction ratio is 1/10, please set the motor rotation to 10 and the

gear output rotation to 1.

gear output turns <=>

units in application

Number of gear output rotations that correspond to a unit in the application.

For one gear revolution at 360 degrees, set the gear output rotation to 1

and the unit within the application to 360.

Automatic mapping IEC parameters that affect the drive are automatically mapped to the

corresponding inputs and outputs of the device.

Control programming PTP control program

146

7.5.3. Sample program

The following is a list of variables used in the sample program.

【Declaration section】

Drive1_Power : MC_Power_SML; //For servo on/off contro

Drive1_Home : MC_Home_SML; //For homing

Drive1_Move : MC_MoveAbsolute_SML; // For moving

MainStep : INT; //Main operation step management variable

Trigger : R_TRIG; // Execution trigger detection FB

Delay, Timer : TON; //Timer

SetOpmode : SML_SetOpmode; //Change of operation mode

In this program, FB execution and flag control are described separately. Write the execution

part of the FB at the beginning of the program.

【Implementation section】

Timer(PT:= T#2S);

Delay(PT:= T#0.5S);

SetOpmode(Axis:= Drive1);

Drive1_Power(Axis := Drive1, Enable := TRUE);

Drive1_Home(Axis := Drive1);

Drive1_Move(Axis:= Drive1,

 Velocity:= 100,

 Acceleration:= 10000,

 Deceleration:= 10000);

PTP control program Control programming

147

Describe the flag control part below the execution part.

【Implementation section】

CASE MainStep OF

 0 : (*S-ON*)

 Drive1_Power.bDriveStart := TRUE;

 Drive1_Power.bRegulatorOn := TRUE;

 IF Drive1_Power.Status THEN

 MainStep := 1;

 END_IF

 1 : (*Delay*)

 Delay.IN := TRUE;

 IF Delay.Q THEN

 MainStep := 2;

 END_IF

 2 : (*Change of operation mode *)

 SetOpmode.eOpmode := SML_OPMODE.SML_OP_HOMING;

 SetOpmode.bExecute := TRUE;

 IF Drive1.eActOpmode = SML_OPMODE.SML_OP_HOMING THEN

 SetOpmode.bExecute := FALSE;

 MainStep := 3;

 END_IF

 3 : (*Homing*)

 Drive1_Home.Execute := TRUE;

 IF Drive1_Home.Done THEN

 MainStep := 4;

 END_IF

 4 : (*Change of operation mode *)

 SetOpmode.eOpmode := SML_OPMODE.SML_OP_POSITION;

 SetOpmode.bExecute := TRUE;

 IF Drive1.eActOpmode = SML_OPMODE.SML_OP_POSITION THEN

 SetOpmode.bExecute := FALSE;

 MainStep := 5;

 END_IF

Control programming PTP control program

148

 5 : (*Waiting for transfer*)

 Trigger(CLK:= bWorkA OR bWorkB OR bWorkC);

 (*Transfer start*)

 IF Trigger.Q THEN

 IF bWorkA THEN

 Drive1_Move.Position := 100;

 ELSIF bWorkB THEN

 Drive1_Move.Position := 200;

 ELSIF bWorkC THEN

 Drive1_Move.Position := 300;

 END_IF

 Drive1_Move.Execute := TRUE;

 MainStep := 6;

 END_IF

 6 : (*Transport complete*)

 IF Drive1_Move.Done THEN

 Drive1_Move.Execute := FALSE;

 MainStep := 7;

 END_IF

 7 : (*Stop for 2 seconds*)

 Timer.IN := TRUE;

 (*Return to the start position*)

 IF Timer.Q THEN

 Timer.IN := FALSE;

 Drive1_Move.Execute := TRUE;

 Drive1_Move.Position := 0;

 MainStep := 8;

 END_IF

 8 : (*Arrive at start position*)

 IF Drive1_Move.Done THEN

 Drive1_Move.Execute := FALSE;

 MainStep := 5;

 END_IF

END_CASE

In PTP control, when executing an FB of an operation mode different from the current

operation mode, it is necessary to change the operation mode in advance. For example,

you need to change to the homing mode before execute homing. If you want to perform

position control after homing in homing mode, you need to change to profile position mode

in advance.

PTP control program Control programming

149

7.5.4. Operation check by trace

Test this sample program by trace.

Fig 7.47 Tracing the sample program

No. Details

1 Waiting for input from switch

2 Move to target position

3 Stop for 2 seconds at the target position

4 Move to start position

1 2 3 4 1 2 3 4 2 3 4 1 1

Control programming Infinite rotation axis control program

150

7.6. Infinite rotation axis control program

Depending on the system, such as the rotation axis of a belt conveyor, the servo motor is

controlled as an infinite rotation axis (modulo axis).

This section explains the points to note when controlling the infinite rotation axis, and creates

a sample program. Use "Motion Standard Project" for the template.

7.6.1. Precautions for infinite rotation axis control

When controlling the infinite rotation axis with the SANMOTION C Software Tool 2.0.0, it is

necessary to pay attention to the setting of the modulo value (the value at which the infinite

rotation axis is reset).

As an example, assume the following two systems.

(1) Mechanism: Gear ratio between motor and machine: [128: 1]

Controller: Modulo function enabled, user coordinates (angle): 360 [°]

Encoder: Multi-rotation backup absolute encoder (23 bits)

Modulo value: 1,073,741,696 [pulse] ([2 ^ 23-1] x 128)

(2) Mechanism: Gear ratio between motor and machine: [100: 1]

Controller: Modulo function enabled, user coordinates (angle): 360 [°]

Encoder: Multi-rotation backup absolute encoder (23 bits)

Modulo value: 838,860,700 [pulse] ([2 ^ 23-1] x 100)

Since the two mechanisms have different gear ratios, the modulo value (the value at which

the infinite rotation axis is reset) also has a different value.

Inside the servo amplifier, the current position is managed by 32-bit data. When the axis

rotates forward and reaches the maximum value of 32 bits, the value is rounded and added

again from the minimum value.

When the modulo function is enabled, the controller calculates the actual position of the

infinite rotation axis based on the reference position and the 32-bit data received from the

amplifier. The position data for systems ① and ② are shown below.

Infinite rotation axis control program Control programming

151

Fig 7.48 Correspondence between reference position and actual position on infinite

rotation axis

In the case of system (1), the modulo value is a power of 2, and 32 bits can be divided equally.

Even if 32-bit data is rounded, the correspondence between the reference position and the

actual position does not change, and the calculation can be performed normally.

In the case of system (2), the modulo value is not a power of 2, so if 32-bit data rounding

occurs, the correspondence between the reference position and the actual position will shift.

There is no problem during continuous operation, but if the power of the controller is turned

on again in this state, an incorrect value will be set at the current position of the axis.

For the above reasons, in a system where the modulo value is not a power of 2, it is

necessary to perform the process of updating the reference position by the program shown

in the next section.

0x6064 : 実位置

(多回転も含めたエンコーダ値)

データサイズ：32bit

上限：2147483647

下限：-2147483648

ユーザー単位

2のべき乗の減速機付きモジュロ軸

（例：23bitエンコーダ＋128：1の減速機）
下限：0

上限：1073741696

下限：0

上限：838860700
ユーザー単位

2のべき乗でない減速機付きモジュロ軸

（例：23bitエンコーダ＋100：1の減速機）

電源投入時の

実位置

電源投入時の

実位置

実位置のオーバーフローにかかわらず，

起動位置の算出結果にズレは発生しない

実位置のオーバーフローを考慮しなければ，

起動位置の算出結果にズレが発生する

max

max

max

min

min

min

Even if rounding occurs, there is no

deviation in the position calculation

result.

When rounding occurs, the calculation

result of the position will be misaligned.

32-bit data

inside the

amplifier

Actual position

of system (1)

Actual position

of system (2)

reference position reference position

Control programming Infinite rotation axis control program

152

7.6.2. Sample program summary

Assume the following infinite rotation axis.

Mechanism: Gear ratio between motor and machine: [10: 1]

Controller: Modulo function enabled, user coordinates (angle): 360 [°]

Encoder: Multi-rotation backup absolute encoder (23 bits)

Modulo value: 838,860,70 [pulse] ([2 ^ 23-1] x 10)

In this system, the modulo value is not a power of 2, so 32-bit rounding causes a shift in the

reference position. You need to update the reference position that the controller uses to

calculate the actual position.

Use the following FB "SMC3_PersistPosition".

This FB can hold the 32-bit position data of the servo amplifier inside the controller when the

axis passes the user coordinate "0" of the controller. By using this value as a new reference

position, even if 32-bit data is rounded, the actual position can be calculated without any

deviation.

Enter a persistent variable in "Persistent Data" because normal variables are initialized when

the controller is turned on again.

Fig 7.49 SMC3_PersistPosition

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

PersistentData SMC3_PersistPosition_Data Structure to store the data to be retained

VAR_INPUT

Enable BOOL TRUE: Enable FB

VAR_OUTPUT

bPositionRestored BOOL TRUE: The position has been restored

during the last start-up of the axis

bPositionStored BOOL TRUE: The position has been stored

during the last call

bBusy BOOL TRUE: FB is not idle

bError BOOL TRUE: Error has occured within the

function block

eErrorID SMC_ERROR Error identification

eRestoringDiag SMC3_PersistPositionDiag Diagnostic information about restoring

Infinite rotation axis control program Control programming

153

7.6.3. Configuration

7.6.3.1. I/O setting

In the sample program, the axis is rotated and stopped by the digital input of S200. Double-

click "Device (SMC200-A)" and select "Device I / O Mapping". After that, set the variable

name as shown in the figure below.

Fig 7.50 I/O setting

7.6.3.2. Axis setting

Configure the infinite rotation axis in the project. Follow the same procedure as in "7.2.2.1.

Add slave" and "7.2.2.2. Add axis" to add a slave and an axis. Change the name of the axis

to "Axis1".

The infinite rotation axis is connected to the reducer, and the gear ratio is 10: 1. The modulo

value is "360" for one rotation of the gear output. This sets the internal modulo value to

838,860,70 [pulse].

Fig 7.51 Infinite rotation axis configuration

7.6.3.3. Persistent variables setting

Create a persistent variable to store the reference position used for position calculation.

Persistent variables retain their values even when the controller is powered on again.

Right-click on “Application” in the device tree and select “Add Object” → “Persistent

Variables” to add a persistent variable. Edit the declaration part of the added persistent

variable as follows.

VAR_GLOBAL PERSISTENT RETAIN

 PersistentData: SMC3_PersistPosition_Data;

END_VAR

Control programming Infinite rotation axis control program

154

7.6.4. Sample program

The variables used in the sample program are described below. Add the following to

"Motion_PRG".

【Declaration section】

PersistPosition : SMC3_PersistPosition; // For retaining the reference position

Axis1_Power : MC_Power; //For servo on / off control

Axis1_Home : IoSanyoDevice.SanHome; // For homing

Axis1_Move : MC_MoveVelocity; // For velocity movement

Axis1_Stop : MC_Stop; // For stopping

MainStep : INT; // Operation step management variables

In this program, FB execution and flag control are described separately. Write the execution

part of the FB at the beginning of the program.

【Implementation section】

PersistPosition(Axis:=Axis1,PersistentData:=PersistentVars.PersistentData, bEnable:= TRUE);

Axis1_Power(Axis := Axis1, Enable := TRUE);

Axis1_Home(Axis := Axis1);

Axis1_Move(

 Axis:= Axis1,

 Velocity:= 90,

 Acceleration:= 900,

 Deceleration:= 900);

Axis1_Stop(Axis:= Axis1);

Describe the flag control part below the execution part.

CASE MainStep OF

 0 : (* Waiting for the start signal *)

 IF xStart THEN

 MainStep := 1;

 END_IF

 1 : (* Servo on *)

 Axis1_Power.bDriveStart := TRUE;

 Axis1_Power.bRegulatorOn := TRUE;

 IF Axis1_Power.Status THEN

 MainStep := 2;

 END_IF

 2 : (* Homing, start of operation *)

 Axis1_Home.Execute := TRUE;

 IF Axis1_Home.Done THEN

 Axis1_Move.Execute := TRUE;

 MainStep := 3;

 END_IF

 3 : (* Stopping operation *)

 IF xStop THEN

 Axis1_Stop.Execute := TRUE;

 END_IF

 END_CASE

Infinite rotation axis control program Control programming

155

7.6.5. Operation check by trace

Check the operation of the sample program with a trace.

Set the variables to be traced as follows.

Diagram Variable name Detail

1 Axis1.diSetPosition Command position to amplifier (32bit)

Axis1.diActPosition Current position received from the amplifier (32bit)

2 Axis1.fSetPosition Command position to amplifier (user unit)

Axis1.fActPosition Current position received from the amplifier (user unit)

3 PersistentData.dwPosOffsetForResiduals Retained reference position (32bit)

Fig 7.52 Operation check by trace

You can see that the value of "PersistentData.dwPosOffsetForResiduals" is updated every

time the axis passes the user coordinate "0".

After "Axis1.diActPosition" exceeds the maximum value and becomes a negative value, set

xStop to TRUE to stop the axis. Record the value of "Axis1.fActPosition" at that time.

Turn on the power of the controller again, and check that the value of "Axis1.fActPosition" is

correct.

In this sample program, it takes time for "Axis1.diActPosition" to exceed the maximum

value. Adjust the velocity of the axis appropriately.

Since the deviation between the command position and the current position is small, the

lines in diagrams 1 and 2 appear to overlap.

1

2

3

Control programming Synchronous Motion Control

156

7.7. Synchronous Motion Control

Synchronous Motion Control means that the motion of an axis (Slave Axis) is derived from

the motion of another axis (Master Axis) by a defined relation. Such a relation might be an

electronic gear (MC_GearIn and MC_GearInPos) or an electronic cam (MC_CamIn). With

electronic gearing a linear relationship between master axis and slave axis exists, which is

specified in form of a gear ratio. With electronic camming any relation between the position

of the master axis and the position of the slave axis can be achieved by means of cam tables.

Fig.7.53 Illustration of relationship between Slave Axis and Master Axis for MC_GearIn,

MC_GearInPos and MC_CamIn

By means of the FB MC_Phasing an additional phase shift between slave axis and master

axis can be established. This phase shift acts as a position offset to the position of the master

axis.

For details of each FB, refers to”9.2.3Function block for multi-axis control”.

Synchronous Motion Control Control programming

157

7.7.1. Electronic gear

Create a sample program of electronic gear control. The template uses "Motion Standard

project".

7.7.1.1. Sample program summary

Endless material (e.g. paper) should be cut into a given length. The cutting of the material

must be done without interrupting the machine. Primer goal is to maximize the amount of

cuts per time.

The material is transported by a belt conveyor. The belt conveyor is driven by a servo drive

and operates at 100 mm / s. The cutting device is mounted on a linear axis driven by a servo

shaft. The maximum velocity of the cutting device is 200 mm / s.

The length of the cut length is 1000 mm. The servo drive of the cutter is a linear drive. This

axis moves synchronously with the servo drive mounted on the belt conveyor during the

cutting operation.

Fig 7.54 Top view of the machine

7.7.1.2. Sequence

During initialization, the servo axis is switched on and if necessary, both axes are referenced.

Also move the belt conveyor at a constant speed. Then the cyclic part of the program starts.

If the encoder axis crosses a determined position, the gear in process starts. The slave axis

(cutting machine) starts to synchronize to the master axis (belt conveyor). When the axis is

synchronous to the belt conveyor, the cutting process is started. After the cutting has finished,

the linear axis is moved back to its starting position to start a new cycle.

In this sample, it is assumed that the cutting process requires about 4 seconds and the

waiting time at the start position takes about 1 second.

Fig.7.55 Execution diagram of the PLC program

Control programming Synchronous Motion Control

158

7.7.1.3. Configuration

An axis for the belt conveyor axis with the name “Conveyor “ are configured and a

linear axis with the name “Cutter” are configured in the project. Follow the same

procedure as for "6.2.2.1 Add slave" and "6.2.2.2Add axis" for " 6.6.1.3. Configuration"

to add slaves and axes.The belt conveyor is driven by a gear, which has a gear ratio

of 20:1. After the gear box a pulley with a reduction of 500 is added. The belt conveyor

axis is used as modulo axis. To reach the requested cutting length of 100 modulo

overrun is configured at 1000.

Fig.7.56 Conveyor configuration

Cutter is attached to ball screw of 20 mm lead. this axis is used as a finite axis. The

operating range from -20 mm to 1000 mm.

Fig.7.57 Cutter configuration

Synchronous Motion Control Control programming

159

7.7.1.4. Sample program

A list of variables used in the sample program is shown below.

【Declaration section】

Cutter_Power : MC_Power; //For servo on/off control of cutter

Conveyor_Power : MC_Power; //For servo on/off control of Conveyor

Cutter_Home : IoSanyoDevice.SanHome; //For homing of cutter

Conveyor_Home : IoSanyoDevice.SanHome; //For homing of Conveyor

Cutter_Move : MC_MoveAbsolute; //For moving the waiting position of cutter

Conveyor_Move : MC_MoveVelocity; //For endless motion at a specified

 velocity of Conveyor

GearInPos : MC_GearInPos; //Velocity synchronization FB

MainStep : INT; //Main operation step management

 variable

SyncStep : INT; //Synchronization step management

 variable

TimeToCut : TON; //Cutting timer

In this program, separate FB execution and flag control are described. Write the execution

part of FB at the top of the program.

【Implementation section】

Cutter_Power(Axis:= Cutter, Enable:= TRUE);

Conveyor_Power(Axis:= Conveyor, Enable:= TRUE);

Cutter_Home(Axis:= Cutter);

Conveyor_Home(Axis:= Conveyor);

Cutter_Move(Axis:= Cutter, Position:= 0, Velocity:= 200, Acceleration:= 3000, Deceleration:= 3000);

Conveyor_Move(Axis:= Conveyor, Velocity:= 100, Acceleration:= 1000, Deceleration:= 1000);

GearInPos(

 Master:= Conveyor,

 Slave:= Cutter,

 Execute:= ,

 RatioNumerator:= 1,

 RatioDenominator:= 1,

 MasterSyncPosition:= 200,

 SlaveSyncPosition:= 200,

 MasterStartDistance:= 200);

Describe the flag control part below the execution part. The relationship between

“7.7.1.2Sequence” and program steps is described below.

Step Detail

Initialization MainStep ： 0～2

Wait for trigger SyncStep ： 0

Coupling SyncStep ： 0

Cutting SyncStep ： 1

Repositioning SyncStep ： 2

Control programming Synchronous Motion Control

160

【Implementation section】

CASE MainStep OF

 0 : (*Initialization*)

 Cutter_Power.bDriveStart := TRUE;

 Cutter_Power.bRegulatorOn := TRUE;

 Conveyor_Power.bDriveStart := TRUE;

 Conveyor_Power.bRegulatorOn := TRUE;

 IF Cutter_Power.Status AND Conveyor_Power.Status THEN

 MainStep := 1;

 END_IF

 1 : (*Homing*)

 Cutter_Home.Execute := TRUE;

 Conveyor_Home.Execute := TRUE;

 IF Cutter_Home.Done AND Conveyor_Home.Done THEN

 MainStep := 2;

 END_IF

 2 : (*Conveyor start*)

 Conveyor_Move.Execute := TRUE;

 IF Conveyor_Move.InVelocity THEN

 MainStep := 3;

 END_IF

 3 : (*Wait coupling*)

 IF SyncStep = 0 THEN

 GearInPos.Execute := TRUE;

 Cutter_Move.Execute := FALSE;

 (*Start synchronization*)

 IF GearInPos.StartSync THEN

 SyncStep := 1;

 END_IF

 END_IF

 (*Cutting*)

 IF SyncStep = 1 THEN

 TimeToCut(IN:= GearInPos.InSync, PT:= T#4S);

 (*Disconnection processing completed*)

 IF TimeToCut.Q THEN

 TimeToCut(IN:= FALSE);

 SyncStep := 2;

 END_IF

 END_IF

 (*Return the cutting device to the waiting position*)

 IF SyncStep = 2 THEN

 Cutter_Move.Execute := TRUE;

 GearInPos.Execute := FALSE;

 IF Cutter_Move.Done THEN

 SyncStep := 0;

 END_IF

 END_IF

END_CASE

Synchronous Motion Control Control programming

161

7.7.1.5. Operation check by trace

Test this sample program by trace.

Blue line: Motion_PRG.GearInPos.StartSync

Green line: Motion_PRG.GearInPos.InSync

Brown line: Motion_PRG.Cutter_Move.Busy

Gray line: Conveyor.fSetPosition

Light blue line: Cutter.fSetPosition

Orange line: Conveyor.fSetVelocity

Yellow line: Cutter.fSetVelocity

Fig 7.58 Tracing the sample program

No. Detail

1 Trigger wait

2 Start of synchronization of belt conveyor and cutter

3 Synchronous operation of belt conveyor and axis “Cutter”

During cutting process

4 Move “Cutter” to start position

1 2 3 4 1 2 3 4

Control programming Synchronous Motion Control

162

7.7.2. Electronic cam

Create a program that assumes the following device as a sample program for electronic cam

control.

Use "Motion Standard project" as a template.

7.7.2.1. Sample program summary

Endless material (e.g. toilet paper) should be perforated each 11 cm. In order not to damage

the material, it is important to move the perforation knife synchronous to the material. The

synchronization must be kept as long as the knife is in contact with the material.

A belt conveyor transports the material towards the perforation knife. The belt conveyor is

driven by a servo axis.

The perforation machine is a cylindrical roll on which 2 knives are mounted. The cylinder has

a perimeter of 400mm. That means the distance between each knife is 200mm

Fig.7.59 Top view of the machine

The belt conveyor is configured as modulo axis with the requested period length of 11cm.

The servo axis of the perforation axis is configured as a linear modulo axis.

Linear therefore, because in the following one can directly refer to the perimeter of the axis.

This perimeter of the rotary knife must be moved synchronous to the belt conveyor in order

not to damage the material. If this axis would not be configured as a rotary axis, the

conversion form [mm] of the perforation axis to [mm] of the belt conveyor would have to be

done together with the coupling process. So, the conversion already is done within the axis

itself. For gearing a gear ratio of 1:1 can be used: 1mm of the rotary knife corresponds 1mm

of the belt conveyor.

Synchronous Motion Control Control programming

163

As there are 2 knives per revolution and the perimeter of the cylinder is 400mm, the axis has

its modulo overrun at 200mm. In order not to damage the material during the perforation

process, the cylinder must be synchronous in a specific range. The following sketch

demonstrates the range in which the axes must be synchronous.

Fig.7.60 Schematic sketch of the perforation cylinder

1 … material being perforated 2 … Perforating knife

3 … both perforation knives are mounted exactly

with a shift of 180°. The distance on the

perimeter between the knives is 200mm.

4 … While the knife is in contact with the

material, the cylinder must move

synchronous to the belt conveyor.

Here a distance of +/- 30° is

determined.

The drawing shows the cylinder in zero position. Both knifes are in vertical position. The axis

should be synchronous from 60° to 120°. Converted to the perimeter of the axis, the axis

must be synchronous from 66.6mm to 133.3mm.

7.7.2.2. Sequence

During initialization, the axis are switched on and if necessary the axis are homed. Further

the movement of the belt conveyor is started with constant velocity.

The program flow can be reduced to the following diagram.

Fig.7.61 Execution diagram of the PLC program

Control programming Synchronous Motion Control

164

7.7.2.3. Configuration

In the configuration two servo axes with the name “Conveyor” and “RotaryKnife” are

configured. Follow the same procedure as for "6.2.2.1 Add slave" and "6.2.2.2Add axis"

for " 6.6.2.2. Configuration" to add slaves and axes. Both are linear axis. The belt

conveyor is driven by a gear, which has a gear ratio of 20:1. After the gear box a pulley

with a reduction of 500 is added. The belt conveyor axis is used as modulo axis. The

belt conveyor has modulo overrun of 110mm, the requested perforation distance of

11cm.

Fig.7.62 Belt conveyor configuration

The rotary knife is also a linear axis and has modulo overrun of 200mm, the distance of

the two knifes on the perimeter of the cylinder. The conversion of degrees (°deg) of the

cylinder to mm on the perimeter of the cylinder is done in the axis itself.

Fig.7.63 RotaryKnife configuration

Synchronous Motion Control Control programming

165

7.7.2.4. Create a cam table

Create a cam table for electronic cam control.

1. Right click “Application” and select “Cam Table ...” from “Add Object”. You can set the

object name when adding.

Fig.7.64 Create cam table

2. Set the properties of the cam table.

Right click on “Cam Table” and select “Properties” → “Cam”, the following window

will be displayed. Here you can edit the graph display of the cam table. By setting as

follows, the position (0 to 200 mm) of the slave axis is drawn with respect to the master

axis position (0 to 110 mm).

If the option “periodic” is set, the end point of the cam table can be set to 200 mm. This

also guarantees, that First (velocity) and second (acceleration) derivation in the starting

point and the end point of the cam table match. So, a continuous movement of the slave

axis is reached.

Fig.7.65 Poperties of the cam table

Control programming Synchronous Motion Control

166

3. Edit the cam table.

The figure below shows the relationship between the master axis and the slave axis on

a straight line. The relationship between this master axis and slave axis is defined in the

cam table.

In the sample program, the slave axis must be cut to the correct position according to

the master axis. Therefore, you need to add a straight line to the cam table.

Fig 7.66 Master axis and slave axis positions represented on a straight line

1 … Position of the master axis 2 … Position of the slave axis

3 … Range in which both axes must be

synchronous

The horizontal axis is the master axis, and the vertical axis is the slave axis. The graph

shows position, speed, acceleration, jerk in order from the top. In this “cam” tab, you

can edit points by dragging. In this “Cam Table” tab, you can edit points by inputting a

numerical value.

Fig.7.67 Cam Table Waveform

Synchronous Motion Control Control programming

167

To add a pointer, click in the “Cam Table” tab. To delete a pointer, click in the

“Cam Table” tab.

Select twice on the "Cam table" tab, and set as follows.

Fig 7.68 Cam table settings

A maladjusted velocity in position 0.0 would cause the slave axis to accelerate and

decelerate between two periods.

7.7.2.5. Sample program

The list of variables used in the sample program is shown below.

【Declaration section】

RotatoryKnife_Power: MC_Power; //For servo on/off control of rotaryKnife

Conveyor_Power : MC_Power; // For servo on/off control of Conveyor

RotatoryKnife_Home : IoSanyoDevice.SanHome; // /For homing of rotaryKnife

Conveyor_Home : IoSanyoDevice.SanHome; // For homing of Conveyor

Conveyor_Move : MC_MoveVelocity; // For endless motion at a specified

 velocity of Conveyor

CamTableSelect : MC_CamTableSelect; //Cam table selection FB

CamIn : MC_CamIn; //Cam synchronous FB

MainStep : INT; //Main operation step management

 variable

In this program, separate FB execution and flag control are described. Write the execution

part of FB at the top of the program.

【Implementation section】

RotatoryKnife_Power(Axis:= RotatoryKnife, Enable:= TRUE);

Conveyor_Power(Axis:= Conveyor, Enable:= TRUE);

RotatoryKnife_Home(Axis:= RotatoryKnife);

Conveyor_Home(Axis:= Conveyor);

Conveyor_Move(Axis:= Conveyor, Velocity:= 100, Acceleration:= 1000, Deceleration:= 1000);

CamTableSelect(Master:= Conveyor, Slave:= RotatoryKnife, Periodic := TRUE, CamTable:= Cam);

CamIn(

 Master:= Conveyor,

 Slave:= RotatoryKnife,

 MasterOffset:= 0,

 SlaveOffset:= 0,

 MasterScaling:= 1,

 SlaveScaling:= 1,

 CamTableID:= CamTableSelect.CamTableID,

 VelocityDiff:= 100,

 Acceleration:= 500,

 Deceleration:= 500);

Control programming Synchronous Motion Control

168

Describe the flag control part below the execution part.

【Implementation section】

CASE MainStep OF

 0 : (* Initialization *)

 RotatoryKnife _Power.bDriveStart := TRUE;

 RotatoryKnife _Power.bRegulatorOn := TRUE;

 Conveyor_Power.bDriveStart := TRUE;

 Conveyor_Power.bRegulatorOn := TRUE;

 IF RotatoryKnife _Power.Status AND Conveyor_Power.Status THEN

 MainStep := 1;

 END_IF

 1 : (* Homing *)

 RotatoryKnife _Home.Execute := TRUE;

 Conveyor_Home.Execute := TRUE;

 IF RotatoryKnife _Home.Done AND Conveyor_Home.Done THEN

 MainStep := 2;

 END_IF

 2 : (*Conveyor start *)

 Conveyor_Move.Execute := TRUE;

 IF Conveyor_Move.InVelocity THEN

 MainStep := 3;

 END_IF

 3 : (* Synchronous control *)

IF NOT CamTableSelect.Done THEN

CamTableSelect.Execute := TRUE;

ELSE

CamIn.Execute := TRUE;

END_IF

END_CASE

Synchronous Motion Control Control programming

169

7.7.2.6. Operation check by trace

Test this sample program by trace.

Blue line: Conveyor.fSetPosition

Green line: RotatoryKnife.fSetPosition

Brown line: Conveyor.fSetVelocity

Gray line: RotatoryKnife.fSetVelocity

Fig.7.69 Tracing the sample program

No. Detail

1 The rotary knife moves to the next starting position of the perforating process. In this phase

the perforation cylinder runs faster than the conveyor belt.

2 The rotary knife is synchronous to the conveyor belt. In this phase the perforation cylinder

must run with the same velocity than the conveyor belt in order not to damage the material.

1 2 1 2 1

Control programming CNC control program

170

7.8. CNC control program

Describes how to program CNC control. Use "Motion Standard project" as a template.

This sample program uses the automatic variable declaration function.

For details of the function, please refer to "4.8.4 Input Assistant function".

7.8.1. Sample program summary

The apparatus is the XY table for painting. If the start switch is pushed, the apparatus paints

while moving by linear interpolation and circular interpolation.

The movable range is between -100 mm and 1000 mm for both X axis and Y axis.

Fig.7.70 Apparatus Overview

Y axis direction

-100～1000mm

X axis direction

-100～1000mm

CNC control program Control programming

171

7.8.2. CNC Editor

In the CNC editor, you implement complex multidimensional motion in the table editor or text

editor according to the CNC language of DIN 66025. There are two ways to edit the CNC

program that is manually and import from DXF file.

7.8.2.1. Add and edit CNC program (Manually)

Add and edit the CNC program manually. Follow these steps for add and edit.

1. 1. Add CNC program. Right-click “Application” and select “CNC program ...” from “Add

object”.

Fig.7.71 Add CNC program

2. The following window will be displayed. Enter an arbitrary name and click “Add”.

In this sample, name it "CNC".

Fig.7.72 Window of adding CNC program

Control programming CNC control program

172

3. The following CNC editor screen is displayed.This screen consists of a main editor, a

graphical editor and a tool box.The main editor is the screen for entering the G code.

When inputting the G code into the main editor, it outputs the trajectory to the graphical

editor.

The graphical editor is the screen that display the trajectory of movement. You can also

draw straight lines and curves in the graphic editor using the toolbox. It is reflected in

the G code.

Fig.7.73 CNC editor screen

4. The procedure for creating the program is described below.

If you use smooth path (G50, G51), you need to add an active FB instance as shown in

the next step.

N000 F80 E10 E-10

N010 G01 X800 Y0

N020 G51 D100

N030 G01 X800 Y800

N040 G01 X0 Y800

N050 G01 X0 Y0

N060 G50

Fig 7.74 CNC example program

Main editor

Graphic editor

Toolbox

Setting movement parameters (Velocity:80, Acceleration:10, Deceleration 10)

CNC control program Control programming

173

In addition, please refer to the help for explanation of each G code.

The explanation of the G code is in the “Travel commands and corresponding path

elements” in the principle of Add-ons → CODESYS SoftMotion → CNC → CNC

language DIN 66025 → DIN 66025 Fundamentals in the help.

In case of using G code such as smooth path (G50, G51), it is necessary to add

corresponding active FB instance.

5. Add active FB instance. Double click on CNC setting. Please select

“SMC_SmoothPath” and click “>“.

Fig.7.75 CNC settings

6. Please return to the screen of the CNC editor and click on the upper left of the

screen. If the display is active, then the path is displayed with preprocessing and the

original path is displayed in light gray in the background.

Fig.7.76 CNC editor screen after smooth activation

Control programming CNC control program

174

Please click the icon of in the upper left of the screen.

The constant speed section, the acceleration section, and the deceleration section are

displayed in the graphical editor.

Red : Interpolator is decelerated.

Green : Interpolator is accelerated.

Gray : Interpolator has constant velocity.

Please click “Analyze dynamics” in “CNC” of the menu bar.

Speed, acceleration/deceleration and jerk can be graphed.

CNC control program Control programming

175

7.8.2.2. Edit CNC program (Import from DXF file)

The CNC program is edited with “Import from DXF file”.DXF Please follow the procedure

below.

1. The additional procedure refer to steps 1 and 2 in “7.8.2.1 Add and edit CNC program

(Manually)”. This time, name it "CNC_1".

2. Click "CNC" on the menu bar and click "Import from DXF file".

Fig.7.77 Import from DXF file

3. A window for selecting the DXF file is displayed. Please select the DXF file to import.

Fig.7.78 Window of File selection

Control programming CNC control program

176

4. After selection, the data is imported . Please click “Import”.

Fig.7.79 Import DXF file

5. When the import is completed, the G code is automatically generated.

Fig.7.80 Screen after DXF file import

6. When the import is completed, the G code is automatically generated.

N000 F80 E800 E-800

N010 G00

N020 G01 X500

N030 G03 Y500 I0 J250

N040 G01 X0

N050 G01 Y0

The block number is automatically assigned By clicking in the upper left corner of

the screen.

CNC control program Control programming

177

7.8.3. Configuration

7.8.3.1. I/O Mapping

Each digital input is used to start the CNC operation and select the operation pattern.

Double-click "Device (SMC200-A)" and select "Device I/O Mapping". After that, set the

variable name as shown in the figure below.

Fig.7.81 I/O Mapping

7.8.3.2. EtherCAT master setting

In the sample program, the communication cycle of EtherCAT communication is set to

4msec.Double-click "EtherCAT_Master_SoftMotion" and select "General". Then set the

Cycle time to 4000 as shown in the figure below.

Fig.7.82 EtherCAT master setting

Control programming CNC control program

178

7.8.3.3. Axis setting

The project consists of “AxisX” for moving to the X axis and “Axis Y” for moving to the Y axis.

Each axis is attached to a 6 mm lead ball screw. And it is finite axis. The movable range is

between -100 mm and 1000 mm for both X axis and Y axis. The configurations of AxisX and

AxisY are identical.

Fig.7.83 Setting of linear axis

CNC control program Control programming

179

7.8.4. Sample program

Create a sample program. First, I will explain the CFC basic operation. Then we show the

whole sample program.

For details of FB in the program, refers to “9.2.4 Function block for CNC control “.

1. Please add POU (“CNCTest”). And the description language should be CFC. The basic

screen of CFC is as follows.

Fig.7.84 CFC basic screen

2. Please select the box from the tool box on the right and click on the mounting section.

Fig.7.85 Add box

Control programming CNC control program

180

3. Please press F2 key. The input assistant window will be displayed. Select “MC_Power”

and click “OK”.

Fig.7.86 Input Assistant

4. The display changes to the following display. Please enter an arbitrary name and press

the enter key.

Fig.7.87 Entering name into FB

CNC control program Control programming

181

5. The automatic declare window will be displayed, please click “OK”.

Fig.7.88 The automatic declare window

6. Please select “input” and click on the mounting part.

Fig.7.89 Add input

7. After clicking “???”, set the name of the axis (here, AxisX).

Fig.7.90 Assignment of axes

Control programming CNC control program

182

8. Drag a connecting line from the output of the Input element to the input of the Box

element.

Fig.7.91 Connecting between input and box

The basic operation of CFC is over

CNC control program Control programming

183

9. The sample program for CNC control is shown below. Please create a program.

The list of variables used in the sample program is shown below.

【Declaration section】

Power_AxisX, Power_AxisY : MC_Power; //For servo on/off control of axisX and

AxisY

Home_AxisX, Home_AxisY : IoSanyoDevice.SanHome; //For homing of axisX and AxisY

Interpolator : SMC_Interpolator; // convert a continuous path into discrete path position

points taking

TRAFOGantry2 : SMC_TRAFO_Gantry2; // Reverse transformation FB

// Forward transformation FB，Use for visualization purpose

TRAFOFGantry2 : SMC_TRAFOF_Gantry2;

// This FB writes the set position for AxisX and AxisY

ControlAxisByPos_AxisX, ControlAxisByPos_AxisY : SMC_ControlAxisByPos;

The execution part is described below.

【Implementation section】

Fig.7.92 CNC example program

CNC operation is started

by turning on "bStart".

You can select the CNC

table with "bSelect".

TRUE：CNC_1

FALSE：CNC

Control programming CNC control program

184

10. Assign the sample program for CNC control to the task.Double-click "EtherCAT_Task"

on the device tree, and select "CNCTest" created from "Add Call".

Fig.7.93 Assigning Tasks

CNC control program Control programming

185

7.8.5. Operation check by visualization

Check the operation of the sample program with visualization and trace.

The screen configuration of visualization is described below. Please set according to the

following procedure.

Fig 7.94 Element of visualization

1. The setting of Element is described below. Please make settings.

Item Detail

Element SMC_VISU_Gantry2（Tag: SM3_CNC）

References

―SM3_CNC.SMC_Visu_Gantry2

―m_Input_SMC_TrafoF_Gantry

CNCTest.TRAFOFGantry2

2. After setting, log in and check the operation.

Fig 7.95 Visualization screen when online

Control programming CNC control program

186

7.8.6. Operation check by trace

In case of “CNC” created manually, the trace during program execution is as follows.

Blue line: bStart

Green line: AxisX.fSetPosition

Brown line: AxisY.fSetPosition

Gray line: AxisX.fSetVelocity

Light blue line: AxisY.fSetVelocity

Fig.7.96 Tracing the sample program (CNC)

No. Detail

1 Trigger(bStart) wait

2 Movement by “N010 G01 X800 Y0”

3 Movement by “N030 G01 X800 Y800”

4 Movement by “N040 G01 X0 Y800”

5 Movement by “N050 G01 X0 Y0”

1 2 3 4 5 1

CNC control program Control programming

187

In case of “CNC_1” imported from DXF file, the trace during program execution is as

follows.

Blue line: bStart

Green line: AxisX.fSetPosition

Brown line: AxisY.fSetPosition

Gray line: AxisX.fSetVelocity

Light blue line: AxisY.fSetVelocity

Fig.7.97 Tracing the sample program(CNC_1)

No. Detail

1 Trigger(bStart) wait

2 Movement by “N010 G01 X800 Y0”

3 Movement by “N030 G01 X800 Y800”

4 Movement by “N040 G01 X0 Y800”

5 Movement by “N050 G01 X0 Y0”

1 2 3 4 5 1

Control programming File control program

188

7.9. File control program

With this product, it is possible to read and write files to part of the user area (Directory under

/sancontrol) and USB memory and microSD memory (for details on the user area, refer to

"6.4.2 Directory structure of user area”

7.9.1. Access path

The path when accessing the user area from the program is described below.

Item Description in program Access directory

Default path File name or ‘./’ /sancontrol

Media path ※1 ‘$MEDIA$/[Device Name]’ /tmp/media/[Device Name]

Data area path ‘$DATA$’ /data

Status report storage path ‘$REPORT$’ /report

Other than those above Not accessible

※1 The device name of USB memory is output to the log.

[Device Name] is USB: "usbxp1", MicroSD: "microsd0p1".

⇒x is a numeric value. Example: usb0p1

⇒The "p1" part is the partition number.

Unexpected behavior may occur if memory is removed while being accessed from the

S200. Therefore, when removing the memory, make sure that the program is not

performing file control.

7.9.2. String literal

A string literal is a constant that indicates a string written in a program. A single-byte character

string is expressed by sandwiching single quotations (‘) in SANMOTION C.In single-byte

strings, the following specifications exist for the combination of characters following the dollar

sign ($).

String Details

‘$$’ Dollar sign ($)

‘$’’ Single quotation (‘)

‘$R’ Carriage Return (CR)

‘$L’,’$N’ Line feed (LF)

‘$T’ Tab
The path to the media contains a dollar sign. Therefore, when setting the path on the

program, it is described as ‘$$MEDIA$$/...’.

Since the status report storage path starts with 'R' and is recognized as CR, it must be

described as follows.

strSample := UTF8#'$$REPORT$$/....'

File control program Control programming

189

7.9.3. Sample program summary

Create a function to output log to USB memory and microSD memory as a sample program.

The log output function is a function that outputs the current time and the variable value at

that point to USB in the format of [DT # YYYY-MM-DD-hh: mm: ss: variable value].

Fig 7.98 Log output result

[DT#YYYY-MM-DD-hh:mm:ss ： Variable value]

Control programming File control program

190

7.9.4. Sample program

7.9.4.1. Create log output function

Create a function. Please add the following library.

【Used library】

Library Name Purpose

SysFile To open, close and write files

SysTime23 To get the current time in local time

CAA DTUtil Extern To combine acquired time to DT type

【Declaration section】

FUNCTION TestLog : BOOL

VAR_INPUT

 FileName : STRING; //Fail name

 Data : STRING; // Variable value

END_VAR

VAR

 SystemTime : SysTime64;

 LocalTime : SystemTimeDate;

 dtLocalTime : DT;

 GetLocalTime : CurTimeEx;

 FileHandle : sysFile.RTS_IEC_HANDLE;

 WriteData : STRING;

END_VAR

【Implementation section】

(* Get current time in local time *)

GetLocalTime(SystemTime:= SystemTime, TimeDate:= LocalTime);

dtLocalTime := DTU.DTConcat(uiYear:= LocalTime.Year, uiMonth:= LocalTime.Month, uiDay:= LocalTime.Day, uiHour:=

LocalTime.Hour, uiMinute:= LocalTime.Minute, uiSecond:= LocalTime.Second, peError:= null);

(*Open the file in append mode *)

FileHandle := SysFileOpen(szFile:= FileName, am:= sysFile.AM_APPEND, pResult:= null);

IF FileHandle <> sysFile.RTS_INVALID_HANDLE THEN

 (* Create write data *)

 WriteData := CONCAT(CONCAT(CONCAT(DT_TO_STRING(dtLocalTime), '$T:$T'), Data), 'RN');

 (* Write to file *)

 SysFileWrite(hFile:= FileHandle, pbyBuffer:= ADR(WriteData), ulSize:= LEN(WriteData), pResult:= null);

 (* Close file *)

 SysFileClose(hFile:= FileHandle);

 (* Return write complete *)

 TestLog := TRUE;

END_IF

File control program Control programming

191

7.9.4.2. Log output function usage example

【How to use】

By setting the following in any PRG, log output can be performed when xWriteLog is set to

TRUE.

IF xWriteLog THEN

// for USB

TestLog(FileName:= '$$MEDIA$$/usb0p1/log.txt', Data:= INT_TO_STRING(Parameter));

// for microSD

TestLog(FileName:= '$$MEDIA$$/microsd0p1/log.txt', Data:= INT_TO_STRING(Parameter));

xWriteLog := FALSE;

END_IF

Control programming Serial control program

192

7.10. Serial control program

Serial communication is a communication method that sends communication data one bit at

a time. Serial communication has the advantages of low cost and resistance to noise.

Fig 7.99 Outline of serial communication

The specifications of serial communication of SMC200 are described below.

Item Detail

Interface name SI

Connector Made by TE Connectivity

Industrial Mini I/O

Communication

standard

RS-485

Baud rate [bps] 4800～115200

Pin assignment

Signal name Signal content Pin number

DATA－ RS485 Send and receive data (－) 6

DATA＋ RS485 Send and receive data (＋) 3

DGND Ground 4，8

*Bus Termination:

Bus termination should be done at the ends of the bus (first and last

device on the bus). The S200 has a built-in 120Ω termination resistor

between pin number 3 and pin 6. When connecting three or more devices

to the RS485 interface, wire so that the S200 is at the end of the bus.

1 1 0 0 0 1 0 1

Send Data

101011000101

Sender

SANMOTION C

Receiver

PC

Recive Data

……11000101

pin number 1

pin number 7

pin number 2

pin number 8

Serial control program Control programming

193

7.10.1. Sample program summary

The specifications of the sample program are shown below. Use "PLC Standard project" as

a template.

【Interface specification】

Item Details

Baud rate 115200bps

Bit length 8bit

Parity None

Stop bit 1bit

Flow control None

【Serial communication specification】

Item Details

Environment Client ： Development PC

Server ： SMC200

Server specification Echo server

Maximum number of communication data 100byte

7.10.2. Sample program

The following library is used in this sample program. Please add a library.

【Used library】

Library Name Purpose

Serial Communication To open, read, and write serial ports

Write the following in PLC_PRG.

【Declaration section】

VAR

 ComOpen : COM.Open;

 ComRead: COM.Read;

 ComWrite: COM.Write;

 SrialParameter : ARRAY [1..7] OF COM.PARAMETER := [

 (udiParameterId := COM.CAA_Parameter_Constants.udiPort, udiValue := 1),

 (udiParameterId := COM.CAA_Parameter_Constants.udiBaudrate, udiValue := 115200),

 (udiParameterId := COM.CAA_Parameter_Constants.udiParity, udiValue := COM.PARITY.NONE),

 (udiParameterId := COM.CAA_Parameter_Constants.udiStopBits, udiValue := COM.STOPBIT.ONESTOPBIT),

 (udiParameterId := COM.CAA_Parameter_Constants.udiTimeout, udiValue := 0),

 (udiParameterId := COM.CAA_Parameter_Constants.udiByteSize, udiValue := 8),

 (udiParameterId := COM.CAA_Parameter_Constants.udiBinary, udiValue := 1)

];

 xStart: BOOL;

 iStep: INT;

 ReadData: ARRAY [0..99] OF BYTE;

END_VAR

Control programming Serial control program

194

【Implementation section】

ComOpen(usiListLength := SIZEOF(SrialParameter)/SIZEOF(COM.PARAMETER), pParameterList := ADR(SrialParameter));

ComWrite(udiTimeOut:= 1000, hCom:= ComOpen.hCom, pBuffer:= ADR(ReadData), szSize:= ComRead.szSize);

ComRead(udiTimeOut:= 1000, hCom:= ComOpen.hCom, pBuffer:= ADR(ReadData), szBuffer:= SIZEOF(ReadData));

CASE iStep OF

 0 : (* Waiting for start *)

 IF xStart THEN

 iStep := 1;

 END_IF

 1 : (* Serial port open *)

 ComOpen.xExecute := TRUE;

 IF ComOpen.xDone THEN

 iStep := 2;

 ELSIF ComOpen.xError THEN

 iStep := -1;

 END_IF

 2 : (* Read and write data *)

 ComWrite.xExecute := FALSE;

 ComRead.xExecute := TRUE;

 IF ComRead.xDone THEN

 ComRead.xExecute := FALSE;

 IF ComRead.szSize > 0 THEN

 ComWrite.xExecute := TRUE;

 END_IF

 ELSIF ComRead.xError THEN

 iStep := -2;

 END_IF

END_CASE

Socket control program Control programming

195

7.11. Socket control program

Socket communication means sending and receiving data between processes. Each process

has a number, which is called a port number. By specifying the IP address of the address on

the network and the port number that is the process address in the computer, data can be

exchanged from the outside to the specified process.

In socket communication immediately after startup, the PLC application may be executed

before the network status is set. It is recommended to install a timer or implement a retry

function when performing socket communication immediately after startup.

Fig 7.100 Outline of socket communication

7.11.1. Socket type

There are several types of sockets depending on the communication method. The socket

corresponds to the session layer when the OSI reference model is associated. TCP and UDP

exist in the transport layer one lower than the socket, and these two can be accessed from

the socket.

Application layer

SSH SMTP ・・・ DNS HTTP
Presentation layer

Session layer
SOCKET

Transport layer
TCP UDP

Network layer
IP

Data link layer

Network interface
Physical layer

Fig 7.101 OSI reference model

Server (IP192.168.21.100)

Web Server

Port number:80

s
o

c
k
e

t
s
o

c
k
e

t

FTP

Port number:21

Client (IP192.168.21.200)

File

File transfer

Internet

Web browsing

s
o

c
k
e

t
s
o

c
k
e

t

192.168.21.100

Port 80

192.168.21.100

Port 21

Control programming Socket control program

196

7.11.2. TCP communication

TCP communication provides reliable two-way communication between two systems (one-

to-one) on the network. Highly reliable data transfer can be performed, such as

acknowledgments and packet sequence checks to retransmit lost packets. However, it is

slower than UDP communication because the protocol overhead (usually 20 bytes) is large.

The flow from connection to disconnection by TCP communication is described below.

Fig 7.102 TCP communication flow

Server Client

SYN

SYN＋ACK

ACK

Transmission data

ACK

Transmission data

ACK

FIN

ACK

FIN

ACK

Connection

Data transfer

Disconnection

Connection

start

Respond to

connection

request

Connection

OK

Connection

complete

Data transmission

Since the

acknowledgme

nt has been

received, data

transmission

Receive

OK

Receive

OK

Disconn

ection

request

Disconnection

OK

Disconnection

request Communication

to server issues

disconnect

complete

disconnect

response

Disconnection

complete

Socket control program Control programming

197

7.11.3. UDP communication

UDP communication can perform high-speed transfer although it is not reliable compared to

TCP communication. Also, since the overhead (8 bytes) is small, it is possible to send and

receive a lot of application data. However, since there is no guarantee that a packet will arrive,

in the case of packet loss, etc., the application must perform retransmission processing to

establish communication, or an application that can tolerate packet loss is required. UDP

communication is used by the following applications.

◆ Broadcast

TCP communicates on a one-to-one basis, but UDP can communicate with multiple

parties.

◆ Communication requiring real-time capability

Streaming applications need to send and receive data in real time at high speed.

◆ Communication that does not require reliability

Because UDP does not establish a connection, it is not reliable for TCP. However, by not

establishing a connection, high-speed data transfer can be performed if communication

is frequently performed with a small amount of communication data. TCP needs to

exchange 3 packets to establish a connection, which reduces the data transfer rate.

You can also improve reliability with UDP by adding processing that resends even if data

is lost.

Fig 7.103 UDP communication flow

Server

Client

Transmission data

Transmission data

Transmission data

Transmission data

Transmission data

The time to wait for

acknowledgment can be

reduced.

There is no need to

establish a connection

Control programming Socket control program

198

7.11.4. Sample program summary

The specifications of the sample program are described below. Use "PLC standard project"

as a template.

【Communication specification】

項目 詳細

Environment Client ： Development PC

Server ： SMC200

Communication protocol TCP/IP （Non-procedure）

Connection form 1：1

Server specification Echo server

Interface ethernet (IP : 192.168.21.101)

Port number 60000

Maximum number of communication data 100byte

7.11.5. Sample program

The following library is used in this sample program. Please add a library.

【Used library】

Library Name Purpose

Network To open, read, and write Ethernet port

Write the following in PLC_PRG.

【Declaration section】

VAR

 IPAddress : NBS.IP_ADDR := (sAddr:='192.168.21.101');

 TCP_Server : NBS.TCP_Server :=(ipAddr:=IPAddress, uiPort:= 60000);

 TCP_Connection : NBS.TCP_Connection;

 TCP_Write : NBS.TCP_Write;

 TCP_Read : NBS.TCP_Read;

 RecvData : ARRAY [0..99] OF BYTE;

 RecvNum : __UXINT;

END_VAR

【Implementation section】

TCP_Server(xEnable:= TRUE);

TCP_Connection(xEnable:= TCP_Server.xBusy, hServer:= TCP_Server.hServer);

TCP_Read(xEnable:= TCP_Connection.xActive, hConnection:= TCP_Connection.hConnection, szSize:= SIZEOF(RecvData), pData:=

ADR(RecvData));

TCP_Write(xExecute:= TCP_Read.xReady, udiTimeOut:= 1000, hConnection:= TCP_Connection.hConnection, szSize:= TCP_Read.szCount,

pData:= ADR(RecvData));

Camera control program Control programming

199

7.12. Camera control program

The camera control function saves still images and delivers videos in real time.

!

CAUTION!

• Always use the function blocks included in this library with a "task" priority of 16 or lower.

Unexpected behavior may occur if executed in a "task" with a high priority.

• When using the camera function, set the shortest task cycle to 4 ms or more.

• For an application that constantly monitors stream screens, set the shortest task cycle to 8 ms

or more.

Fig 7.104 Overview of camera control function

7.12.1. Specification

Item Detail Note

Supported camera
USB camera

(UVC supported)

Depending on the camera, power supply shortage may

occur. In that case, please use a USB cable supplied

from a separate power supply.

Interface USB2.0

Maximum

connection number

1

Effective timing When a supported

camera is inserted

Streaming port 10443 Only one device can access this port. A 599 error is

returned for the second and subsequent machines.

Still image

data format
JPEG

Still image interval

when batch saving
100ms

ImagesSave***(FB) saves still images in the specified

time range all at once. It means the shortest interval

between. still images at that time.

Resolution 640x480

Frame rate 30fps

Control programming Camera control program

200

7.12.2. Function block

7.12.2.1. ImageSave

This function block saves still images captured by the connected camera. Saves the still

image captured at the next capture event that occurs after the function block is executed to

the specified path.

Fig. 7.105 ImageSave

VAR_INPUT

Execute BOOL Save streamed still image on rising edge

FilePath STRING
Image save destination

(If not set, the latest file will be stored in the $DATA$/image folder)

VAR_OUTPUT

Done BOOL Execution completed state

Busy BOOL Running state

Error BOOL Error condition

ErrorId ERROR Error detail

7.12.2.2. ImagesSaveGoingBackInTime

This function block saves all still images from the time rewound by the specified amount of

time, based on the time stamp of the still image acquired at the next imaging event that

occurs after execution. Maximum rewind time is 10 seconds.

Fig. 7.106 ImagesSaveGoingBackInTime

VAR_INPUT

Execute BOOL Save streamed still image on rising edge

DirPath STRING
Image save destination

(If not set, store in $DATA$/image folder)

TimeToBack USINT
Rewind time (unit: seconds)

Input range: 1 to 10 seconds

VAR_OUTPUT

Done BOOL Execution completed state

Busy BOOL Running state

Error BOOL Error condition

ErrorId ERROR Error detail

Camera control program Control programming

201

7.12.2.3. ImagesSaveTriggerPrePost

This function block saves the still images before and after the specified time based on the

time stamp of the still image acquired at the next imaging event that occurs after execution.

Fig. 7.107 ImagesSaveTriggerPrePost

VAR_INPUT

Execute BOOL Save streamed still image on rising edge

DirPath STRING
Image save destination

(If not set, store in $DATA$/image folder)

PrePostTime USINT
Time before and after the trigger (unit: seconds)

Input range: 1 to 5 seconds

VAR_OUTPUT

Done BOOL Execution completed state

Busy BOOL Running state

Error BOOL Error condition

ErrorId ERROR Error detail

7.12.2.4. Error list

Below is a list of errors that occur in this function block.

Error ID Error name Detail

0 NO_ERROR No error occurred

1 ERROR_FILE_PATH Invalid save destination path

2 ERROR_CAM_NOT_READY The camera is not ready

3 ERROR_GOBACK_TIME_INVALID Invalid rewind time

4 ERROR_IMAGE_COPY Failed to save still image

90 ERROR_INTERNAL Internal error

99 ERROR_TIMEOUT Timeout error

Control programming Camera control program

202

7.12.3. Visualization Objects

7.12.3.1. VisuStreamer

VisuStreamer is an object for displaying stream distribution on Webvisu. By setting the URL

of the stream server using Webvisu's "Web browser" object, monitoring of stream delivery is

realized. The URL that is set is "https://<host name>:10443" and the host name is used in

the URL, so if you access from an environment where the host name cannot be resolved

(external network, etc.), use this object It can not be used.

Fig. 7.108 VisuStreamer

The following FBs are also provided as input variables for each object.

⚫ VisuStreamerCtrl (FB)

This function block provides the URL of the stream server.

VAR_INPUT

Enable BOOL Enable streamed object

VAR_OUTPUT

none - -

Streaming

enable button

Streaming

display screen

Camera control program Control programming

203

7.12.3.2. VisuDispImage

VisuDispImage is an object that updates a still image after a specified amount of time. It is

an object that allows you to check the image data even in an environment where host name

resolution is not possible, and the CPU load is not as large as VisuStreamer.

Fig. 7.109 VisuDispImage

The following FBs are also provided as input variables for each object.

⚫ VisuDispImageCtrl (FB)

This function block enables still image acquisition and timer processing performed by

VisuDispImage.

VAR_INPUT

Enable BOOL Enable still image update object

VAR_OUTPUT

none - -

Still image update

enable button

Still image

display area

Object error

display

Still image update

time setting

Timestamp of

displayed still image

Control programming Camera control program

204

7.12.4. Sample program summary

Below is a sample program that saves a still image to microSD 10 seconds before an error

occurred. Use "PLC Standard project" as a template.

Fig. 7.110 Camera control sample program

7.12.5. Sample program

The sample program uses the following libraries. Please add the library.

【Used library】

Library Name Purpose

SanCamera To use the function block that saves still images

Write the following in PLC_PRG.

【Declaration section】

VAR

ImagesSaveGoingBackInTime: SanCamera.ImagesSaveGoingBackInTime;

AlarmFlg: BOOL;

END_VAR

【Implementation section】

ImagesSaveGoingBackInTime(Execute:= AlarmFlg, DirPath:= '$$MEDIA$$/microsd0p1', TimeToBack:= 10);

Since it is not recommended to run the camera control function block in a real-time task,

change the priority of MainTask in the template project to 16 or higher.

Camera control program Control programming

205

7.12.6. Operation check

In the sample program, the stopwatch is imaged so that the rewind time can be grasped

quantitatively, and AlarmFlg is set to TRUE when 15 seconds have elapsed.

If the image is captured successfully, a still image from 5 seconds to 15 seconds will be

saved as shown below.

Fig. 7.111 Top directory of microSD after function block execution

Fig. 7.112 Saved data (left: oldest still image, right: newest still image)

Control programming Mail sending program

206

7.13. Mail sending program

The S200 is equipped with a function to send emails via the SMTP server prepared by Sanyo

Denki, and emails can be sent using web applications or function blocks. E-mail can also be

sent using the SMTP server provided by the customer.

For the SMTP server operated by Sanyo Denki, please refer to "M0021001 SMTP Server

Terms of Use" before using.

7.13.1. Email settings via web app

With "SMTP" in the "Communication function" tab of the web application, you can set the

parameters of the mail and send a test.

Fig.7.113 Email settings via web app

Mail sending program Control programming

207

【SMTP setting items】

Item Detail

Use custom settings Select an SMTP server.

Enabled: SMTP server prepared by the customer

Disabled: SANYO DENKI SMTP server (initial value)

Server name※1 Set the connection destination of the SMTP server.

User name※1 Set the user ID when connecting to the SMTP server.

Password※1 Set the password for connecting to the SMTP server.

Port no.※1 Set the port number when connecting to the SMTP server.

From Address Set the email sender address.

As this is a send-only address, you cannot reply to this address.

When using SANYO DENKI's SMTP server, specify the sender's address

below. The domain name is fixed.

<Account name(arbitrary setting)>@sanmotionc-cloud.com

To Address Set the e-mail destination address.

When setting multiple addresses, separate the addresses with a ";".

Setting Example:

a@xxx.com;b@xxx.com;

*1: Specify only when "Use custom settings" is enabled

【Button operation】

Item Detail

Save Saves the values of "SMTP setting items" that have been entered in the

controller.

Reload Reads the values of "SMTP setting items" saved in the controller.

Send The email will be sent according to the contents of the displayed "SMTP setting items".

Contents of the test email:

Subject :From SANMOTION C

Main text :This message is a test mail from SANMOTION C.

Control programming Mail sending program

208

7.13.2. Function block

Below is a list of function blocks for notifying emails from the controller.

!

CAUTION!

• Always use the function blocks included in this library with a "task" priority of 16 or lower.

Unexpected behavior may occur if executed in a "task" with a high priority.

7.13.2.1. Send_Mail

Execute the email notification using the email notification information set in the Web

application.

Fig. 7.114 Send_Mail

VAR_INPUT

Execute BOOL FB execution

Subject WSTRING(255) Subject

Content WSTRING(2000) Main text

VAR_OUTPUT

Busy BOOL Sending mail

Done BOOL Mail transmission completed

BlackListExist BOOL Notification of presence of blacklisted mails

Error BOOL Error condition

ErrorId UINT Error detail

Sanyo Denki's SMTP server is used, and when an e-mail does not reach the specified

destination, the address may be registered in the unsendable list. BlackListExist is set to

TRUE if you attempt to send mail to a destination registered in the unsendable list. You

can use the test sending function of the web application to check which email addresses

are registered in the unsendable list among the email addresses specified as recipients.

In FB, emails are sent to email addresses other than those registered in the unsendable

list, and the recipients list includes the addresses registered in the unsendable list.

Please contact us if you would like to remove your email address from the unsendable list.

Mail sending program Control programming

209

7.13.2.2. SM_Alarm_SendMail

An email will be sent when an amplifier alarm occurs on the SM axis.

Fig. 7.115 SM_Alarm_SendMail

VAR_IN_OUT

Axis AXIS_REF_SM3 Axis reference with alarm management

VAR_INPUT

Enable BOOL FB execution

AxisName STRING(20)
Name of the axis used for notification

(If not set, the device tree axis name is used.)

VAR_OUTPUT

Busy BOOL FB running

Error BOOL Error condition

ErrorId UINT Error detail

The subject and main text of the email sent by this function block are as follows.

Item Detail

Subject [Emergency] Drive Alarm Notification

Main text [Axis Information]

Axis Name : < Axis name (e.g. Axis1)>

Driver : < Sanyo Denki driver series name (e.g. RS3)>

[EtherCAT Information]

ESM : <ESM state when an alarm occurs (e.g. OP)>

ALStatus : <AL status when an alarm occurs>

StatusWord : <Status word when an alarm occurs>

ControlWord : < Control word when an alarm occurs >

ActOperationMode : < Operation mode when an alarm occurs >

SetOperationMode : < Set Operation mode when an alarm occurs >

[Alarm Information]

Alarm Code : <Alarm code (e.g. value of 0x2101)>

Control programming Mail sending program

210

7.13.2.3. SML_Alarm_SendMail

An email will be sent when an amplifier alarm occurs on the SML axis.

Fig. 7.116 SML_Alarm_SendMail

VAR_IN_OUT

Axis AXIS_REF_SML Axis reference with alarm management

VAR_INPUT

Enable BOOL FB execution

AxisName STRING(20)
Name of the axis used for notification

(If not set, the device tree axis name is used.)

VAR_OUTPUT

Busy BOOL FB running

Error BOOL Error condition

ErrorId UINT Error detail

The subject and main text of the email sent by this function block are as follows.

Item Detail

Subject [Emergency] Drive Alarm Notification

Main text [Axis Information]

Axis Name : < Axis name (e.g. Axis1)>

Driver : < Sanyo Denki driver series name (e.g. RS3)>

[EtherCAT Information]

ESM : <ESM state when an alarm occurs (e.g. OP)>

ALStatus : <AL status when an alarm occurs>

StatusWord : <Status word when an alarm occurs>

ControlWord : < Control word when an alarm occurs >

ActOperationMode : < Operation mode when an alarm occurs >

SetOperationMode : < Set Operation mode when an alarm occurs >

[Alarm Information]

Alarm Code : <Alarm code (e.g. value of 0x2101)>

Mail sending program Control programming

211

7.13.2.4. Error list

Below is a list of errors that occur in this function block.

Error ID Error name Detail

0 ERR_NOERR No error occurred

1 ERR_RECV_DATA_FORMAT Receive data format error

2 ERR_PARAMETER Email parameter setting error

6 ERR_NOT_FOUND Specified server not found

7 ERR_CONN_LOST Connection refused

28 ERR_TIMEOUT Timeout occurred

75 ERR_CONV_CHAR Failed to convert to character code

99 ERR_INTERNAL Internal error

500 ERR_UNSUPPORTED_DRIVE Unsupported driver specified

501 ERR_GET_ALARMCODE Failed to get alarm code

1000~ ERR_SMTP_STATUS Error response on SMTP server

2000~ ERR_GET_TOKEN_STATUS Error response when obtaining

authentication token to Sanyo server

3000~ ERR_GET_BLACKLIST_STATUS Error response when acquiring the Sanyo

server's blacklist

7.13.3. Sample program summary

Below is a sample program that sends an email with the following contents. Use "PLC

Standard project" as a template.

Fig. 7.117 Email sending sample program overview

Control programming Mail sending program

212

7.13.4. Sample program

The sample program uses the following libraries. Please add the library.

【Used library】

Library Name Purpose

SanMail To use a function block that sends mail

SysTimeRtc To use a function that obtains the current time

Write the following in PLC_PRG.

【Declaration section】

VAR

 Send_Mail: SanMail.Send_Mail;

 Alarmflg: BOOL;

 AlarmCode: UDINT := 100;

 CurDT: DT;

 wstrTMP: WSTRING;

 result: SysTimeRtc.RTS_IEC_RESULT;

END_VAR

【Implementation section】

IF Alarmflg THEN

 Alarmflg := FALSE;

 Send_Mail.Content := "date: ";

 wstrTMP := DT_TO_WSTRING(DWORD_TO_DT(SysTimeRtcGet(pResult:= result)));

 SanMail.StrConcatW(pstFrom := ADR(wstrTMP), pstTo:= ADR(Send_Mail.Content), iBufferSize:= TO_INT(SIZEOF(Send_Mail.Content)));

 wstrTMP := "RN";

 SanMail.StrConcatW(pstFrom := ADR(wstrTMP), pstTo:= ADR(Send_Mail.Content), iBufferSize:= TO_INT(SIZEOF(Send_Mail.Content)));

 wstrTMP := "AlarmCode: ";

 SanMail.StrConcatW(pstFrom := ADR(wstrTMP), pstTo:= ADR(Send_Mail.Content), iBufferSize:= TO_INT(SIZEOF(Send_Mail.Content)));

 wstrTMP := UDINT_TO_WSTRING(AlarmCode);

 SanMail.StrConcatW(pstFrom := ADR(wstrTMP), pstTo:= ADR(Send_Mail.Content), iBufferSize:= TO_INT(SIZEOF(Send_Mail.Content)));

 Send_Mail.Execute := TRUE;

ELSE

 Send_Mail.Execute := FALSE;

END_IF

Send_Mail(Subject:= "alarm detected");

Since it is not recommended to run the camera control function block in a real-time task,

change the priority of MainTask in the template project to 16 or higher.

Mail sending program Control programming

213

7.13.5. Operation check

On the web application screen described in "7.13.1 Email settings via web app", set the

sender address and destination address, and set TRUE to Alarmflg of the sample program.

If the transmission is successful, you can check the following email at the specified

destination.

Fig. 7.118 Sample program sent email contents

Control programming 1-Wire communication program

214

7.14. 1-Wire communication program

1-Wire is a serial interface standard that transfers data using a ground line and a single signal

line. One master and multiple slaves can be connected to the bus, and the master executes

communication with any slave.

As a master, the S200 can acquire measurement data from the corresponding 1-Wire sensor.

Fig. 7.119 1-Wire Communication Overview

7.14.1. Specification

Item Detail

Supported device

Automatic communication

9CT1-T（Temperature and humidity sensor）

9CT1-P（Barometric pressure sensor）

Manual communication General purpose device

Interface SI （Industrial Mini I/O）

Pin assignment

Signal name Signal content Pin number

1-Wire 1-Wire signal 5

5V Power supply for 1-Wire

sensor (DC5V)

7

DGND Ground 4，8

デバイス最大接続台数※ 7 台

配線長 最大 200m

通信速度 15400 [bps]

最大通信データ長 255 [Bytes] （手動通信時）

通信開始タイミング 起動直後

通信周期

デバイス未接続時のデバイス検出周期：60 秒

デバイス接続時のデバイス検出周期：30 秒

デバイスの値取得周期：100ms/台

検出デバイスのリセット方法※ 再起動

* Detected devices are retained in the detection list even after disconnection. Therefore, the

maximum number of connected devices means the total number of devices detected after

power-on. For example, after detecting 7 devices, if one device is disconnected and a new

device is connected, an error in the number of connected devices will occur.

sensor sensor
1-Wire

pin number 1

pin number 7

pin number 2

pin number 8

1-Wire communication program Control programming

215

7.14.2. Function block

Below is a list of function blocks that control 1-wire communication.

!

CAUTION!

• Always use the function blocks included in this library with a "task" priority of 16 or lower.

Unexpected behavior may occur if executed in a "task" with a high priority.

7.14.2.1. GetList

Gets information about all devices connected to the 1-Wire bus and returns an array of

structure DeviceList that stores data according to the 64-bit ID and device type.

Fig. 7.120 GetList

VAR_INPUT

Execute BOOL Start getting list on rising edge

VAR_OUTPUT

Done BOOL TRUE: Acquisition of device list completed

Busy BOOL TRUE: Getting device list

Error BOOL TRUE: Failed to get device list

ErrorID ERROR Error identifier

DeviceList ARRAY[1..7] OF DeviceList Detected device list

DetectedDeviceNum USINT Number of devices detected

Due to the specifications of the 1-Wire communication protocol, the list output to

DeviceList may differ from the actual connection order. Please check the detected 64-bit

ID carefully before using it.

Control programming 1-Wire communication program

216

7.14.2.2. GeneralCom

Using the obtained DeviceID, perform 1-Wire communication with a general-purpose device.

General-purpose communication is possible by entering the command to be sent and the

data size to be received.

Fig. 7.121 GeneralCom

VAR_INPUT

Execute BOOL Send command on rising edge

ComDeviceID DeviceID DeviceID of the communicating device

WriteData POINTER TO BYTE A pointer to the GeneralCommandData array to

send

uiWriteArrayNum UINT Number of elements in the GeneralCommandData

array to send

ReadData POINTER TO BYTE A pointer to the GeneralCommandData array

containing the received data

VAR_OUTPUT

Done BOOL TRUE: Data transmission/reception completed

Busy BOOL TRUE: In communication

Error BOOL TRUE: Failed to send and receive data

ErrorID ERROR Error identifier

uiReceiveNum UINT Number of packets received

7.14.2.3. Error list

Below is a list of errors that occur in this function block.

Error ID Error name Detail

0 NO_ERROR No error occurred

1 COMMUNICATION_BUSY 1-Wire bus busy

2 TIMEOUT Timeout error

3 NO_DEVICE_DETECTED 1-Wire device not detected

4 TOO_MANY_DEVICE_DETECTED More than maximum number of devices detected

5 COMMAND_TOO_LONG General purpose communication command

exceeds maximum length

6 INCORRECT_ARRAY_NUM The number of general communication

commands is 0 or exceeds the maximum number

7 INCORRECT_DEVICE_ID The DeviceID entered does not exist in the list

8 INCORRECT_DEVICE_TYPE Invalid DeviceType entered

9 READ_WRITE_FAILED Failed to write/read to 1-Wire bus

10 INTERNAL_ERROR Internal error

1-Wire communication program Control programming

217

7.14.3. List information structure

The structures used in function blocks are described below.

7.14.3.1. DeviceList (STRUCT)

The structure used for GetList output.

Variable name Data type Detail

DeviceID DeviceID Stores device ID and device type

CommonData CommonData Stores the device common data part

UniqueData UniqueData Stores device-specific data

7.14.3.2. DeviceID (STRUCT)

A structure containing the 1-Wire device ID and device type.

Variable name Data type Detail

DeviceID LWORD 64-bit ID of the device

DeviceType DeviceType Device type

Control programming 1-Wire communication program

218

7.14.3.3. DeviceType (ENUM)

Enumerated type that defines SANYODENKI devices.

7.14.3.4. CommonData (STRUCT)

The structure used for GetList output.

Variable name Data type Detail

DeviceStatus DeviceStatus Device communication status

ComCount UDINT Number of communication executions with the device

ErrorCount UDINT Number of communication failures with the device

7.14.3.5. DeviceStatus (ENUM)

Enumerated data that defines the communication state of the device.

Variable name Data type Detail

NOT_COM 0 Communication not executed (transition only at first detection)

OK 1 Communicating normally

ERROR 2 Communication error

7.14.3.6. UniqueData (UNION)

The union used for the output of GetList.

Variable name Data type Detail

General U_General Data part structure for general-purpose devices

San_9CT1_T U_9CT1_T Data part structure for temperature and humidity sensor

San_9CT1_P U_9CT1_P Data part structure for barometric pressure sensor

7.14.3.7. U_General (STRUCT)

The structure used for GetList output.

Variable name Data type Detail

Com_Busy BOOL General purpose communication busy flag

TRUE: Busy

FALSE: Available

LastError San1WireCom_ERROR ID of the last error that occurred

TimeStamp TimeStamp Time of last general purpose communication

Variable name Data type Detail

General 0 General purpose device

San_9CT1_T 1 San Ace temperature and humidity sensor

San_9CT1_P 2 San Ace barometric pressure sensor

1-Wire communication program Control programming

219

7.14.3.8. U_9CT1_T (STRUCT)

The structure used for GetList output.

Variable name Data type Detail

Temperature REAL Sensor temperature reading [°C]

Humidity REAL Sensor humidity reading [%]

TimeStamp TimeStamp Time when the measured value was acquired

7.14.3.9. U_9CT1_P (STRUCT)

The structure used for GetList output.

Variable name Data type Detail

Pressure REAL Pressure measurement value of the sensor [Pa]

TimeStamp TimeStamp Time when the measured value was acquired

7.14.3.10. TimeStamp (STRUCT)

A structure for representing the time of communication with a 1-Wire device.

The time is the RTC value.

Variable name Data type Detail

TsDate DATE Year, month, day of timestamp

TsTimeOfDay TIME_OF_DAY Timestamp hour, minute, second (in ms)

RawData LWORD Raw timestamp data

7.14.3.11. GeneralCommandData (STRUCT)

Packet data structure used for general-purpose 1-Wire communication. Used for input/output

of GeneralCom (FB).

Variable name Data type Detail

Data ARRAY [0..255] OF BYTE An array that stores data for one command

Length USINT Data length

Control programming 1-Wire communication program

220

7.14.4. Sample program summary

In this sample program, measurement data is acquired from the temperature/humidity sensor

9CT1-T and barometric pressure sensor 9CT1-P connected to the S200. Use "PLC Standard

project" as a template.

Fig. 7.122 1-Wire communication sample program overview

7.14.5. Sample program

The sample program uses the following libraries. Please add the library.

【Used library】

Library Name Purpose

San1WireCom To use the function block for 1-Wire communication

Write the following in PLC_PRG.

【Declaration section】

VAR

 GetDeviceList :San1WC.GetList; // FB to get device list

 Timer :TON; // Timer

 MainStep :INT; // Main operation step control variable

END_VAR

【Implementation section】

GetDeviceList();

Timer(PT:= T#10S);

CASE MainStep OF

 0 : (* Get list *)

 GetDeviceList.Execute:= TRUE;

 IF GetDeviceList.Done THEN

 MainStep:= MainStep + 1;

 ELSIF GetDeviceList.Error THEN

 GetDeviceList.Execute:= FALSE;

 END_IF

 1 : (* Timer *)

 Timer.IN := TRUE;

 IF Timer.Q THEN

 GetDeviceList.Execute:= FALSE;

 Timer.IN := FALSE;

 MainStep:= MainStep - 1;

 END_IF

END_CASE

Since the function block for 1-Wire communication is not recommended to be executed as

a real-time task, change the priority of MainTask in the template project to 16 or higher.

9CT1-T 9CT1-P
1-Wire

1-Wire communication program Control programming

221

7.14.6. Operation check

Acquisition of the device list starts automatically after the application starts. After obtaining

the list, it is updated every 10 seconds using a timer.

From the DeviceList output, confirm that data such as the device ID, temperature/humidity,

and atmospheric pressure have been acquired.

Fig. 7.123 1-Wire communication sample execution screen

Control programming MQTT communication program

222

7.15. MQTT communication program

MQTT (Message Queuing Telemetry Transport) is a publish-subscribe model communication

protocol that is specialized for IoT.

In MQTT communication, the message sender is the publisher, the message receiver is the

subscriber, and the broker, which is the message relay server, manages the messages and

distributes them appropriately to the subscribers.

Fig. 7.124 MQTT model

Publisher

(Sender

Subscriber

(Receiver)

Broker

(Server)

Subscriber

(Receiver)

MQTT communication program Control programming

223

7.15.1. Specification

Item Detail Note

Supported MQTT

version
3.1，3.1.1，5.0

Supported

commands

・Distribution of messages

(PUBLISH)

・Subscription registration

(SUBSCRIBE)

・Unsubscribe

(UNSUBSCRIBE)

Command

transmission

method

Manual (FB input variable operation) Simultaneous transmission times: 10

Supported QoS

level
0/1/2

0： Maximum of 1 time. No arrival guarantee

1： Minimum of 1 time. Arrival guaranteed

(Possibility of duplicate arrival)

2： Exactly once. Arrival guaranteed

Will function Supported

Sends the Topic and Payload specified in

this Will when the server cannot

communicate with the client.

The Subscriber side can determine that the

Publisher side has been disconnected.

TLS version tlsv1.3，tlsv1.2，tlsv1.1 Default：tlsv1.2

Certificate

designation method

Specify the server name registered

in the web application

Supported format: PEM format

Configurable file：

・Certificate authority (CA) certificate

・Client certificate

・Client private key

Server certificate

verification

Define validation requirements

imposed on the server

SSL_VERIFY_NONE：don't validate

SSL_VERIFY_PEER：verify.

Connection is aborted if validation fails

Valid only when a server certificate is set

Multibyte characters Not supported

Maximum topic size 255byte

Maximum payload

size
1000byte

Control programming MQTT communication program

224

7.15.2. Certificate registration

Various certificates are required for TLS communication with the broker. Certificates can be

registered from the web app.

For details, refer to "M0020986 Web Application Instruction Manual".

Fig. 7.125 Certificate registration screen

MQTT communication program Control programming

225

7.15.3. Function block

Below is a list of function blocks that control MQTT communication.

!

CAUTION!

• When performing TLS communication using the function blocks included in this library, be sure

to set the "task" priority to 16 or higher.

Unexpected behavior may occur if executed in a "task" with a high priority.

7.15.3.1. CONNECT

Performs MQTT connection/disconnection processing.

Fig. 7.126 CONNECT

VAR_INOUT

SERVER SERVER_REF Reference variable

VAR_INPUT

Enable BOOL Perform connection/disconnection control

ClientId STRING(255) Client ID

UserName STRING(255) User name

Password STRING(255) Password

KeepAlive UINT Keep alive interval

CleanSession BOOL Clean session flag

Will WillParameter Will command information

Prop POINTER TO BYTE Property information

VAR_OUTPUT

Busy BOOL Command transmission status

Connetcted BOOL Command transmission completion status

RecvStatus BOOL Reception status

RecvData RecvPublish Store received data

Error BOOL Error condition

Control programming MQTT communication program

226

7.15.3.2. PUBLISH

Transfer MQTT PUBLISH command.

Fig. 7.127 PUBLISH

VAR_INOUT

SERVER SERVER_REF Reference variable

VAR_INPUT

Execute BOOL Execute FB

Topic STRING(255) Topic

ptPayload POINTER TO BYTE Payload

Payloadlen UINT Payload size

QoS BYTE QoS level

xRetain BOOL Hold flag

Prop POINTER TO BYTE Property information

VAR_OUTPUT

Busy BOOL Command transmission status

Done BOOL Command transmission completion status

Error BOOL Error condition

ErrorId UDINT Error detail number in FB

MQTT communication program Control programming

227

7.15.3.3. SUBSCRIBE

Transfer MQTT SUBSCRIBE command.

Fig. 7.128 SUBSCRIBE

VAR_INOUT

SERVER SERVER_REF Reference variable

VAR_INPUT

Execute BOOL Execute FB

Topic STRING(255) Topic

QoS BYTE QoS level

Options BYTE Options to use with MQTTv5 subscriptions

Prop POINTER TO BYTE Property information

VAR_OUTPUT

Busy BOOL Command transmission status

Done BOOL Command transmission completion status

Error BOOL Error condition

ErrorId UDINT Error detail number in FB

7.15.3.4. UNSUBSCRIBE

Transfer the MQTT UNSUBSCRIBE command.

Fig. 7.129 UNSUBSCRIBE

VAR_INOUT

SERVER SERVER_REF Reference variable

VAR_INPUT

Execute BOOL Execute FB

Topic STRING(255) Topic

Prop POINTER TO BYTE Property information

VAR_OUTPUT

Busy BOOL Command transmission status

Done BOOL Command transmission completion status

Error BOOL Error condition

ErrorId UDINT Error detail number in FB

Control programming MQTT communication program

228

7.15.3.5. SERVER_REF

The structure contents of the reference variable are described below.

Variable name Data type Detail

HostName STRING(255) Host name of the connection destination

PortNo UINT Port number of the connection destination

TimeoutTime TIME Time until timeout

ProtoVer Protocol_Version

Protocol version

mqtt_v3_1：3

mqtt_v3_1_1：4 （Default）

mqtt_v5：5

TLS

Enable BOOL TLS enable/disable

Version TlsVersion

TLS version setting

tlsv1_1：1

tlsv1_2：2 （Default）

tlsv1_3：3

ServerName STRING(100)
The server name set when the certificate

was registered with the web application

KeyPassPhrase STRING(255) Private key passphrase for client authentication

ServerCertCheck BOOL Enable/disable server certificate check

ErrorId UINT Error identifier

file:///C:/ProgramData/SANMOTION%20C%20Software%20Tool/LibDoc/Sanyodenki/SanMQTT/1.0.0.0/Default/VGezKhzIjq45LJhNNtMX5Cnjr-0/tlsversion.html%23tlsversion

MQTT communication program Control programming

229

7.15.3.6. Error list

Below is a list of errors that occur in this function block.

Error ID Error name Detail

0 ERR_SUCCESS No error occurred

1 ERR_NOMEM Out of memory error

2
ERR_PROTOCOL

A protocol error occurred while

communicating with the broker

3 ERR_INVAL Input parameter error

4 ERR_NO_CONN Client not connected to broker

5 ERR_CONN_REFUSED Connection refused error

6 ERR_NOT_FOUND Server not found

7 ERR_CONN_LOST Disconnect from server

8 ERR_TLS TLS parameter error

9 ERR_PAYLOAD_SIZE Payload size error

10 ERR_NOT_SUPPORTED Unsupported property

11 ERR_AUTH User authentication error

12 ERR_ACL_DENIED Access was not granted

13 ERR_UNKNOWN Application specific error

14 ERR_INTERNAL Internal error

15 ERR_NETWORK Network setting error

19
ERR_KEEPALIVE

No response within the time set by keep-

alive

20 ERR_LOOKUP Broker not found

22 ERR_DUPLICATE_PROPERTY Duplicate property error

23 ERR_TLS_HANDSHAKE TLS handshake failed

24
ERR_QOS_NOT_SUPPORTED

Used a higher QoS than what the broker

supports

25
ERR_OVERSIZE_PACKET

The specified packet exceeds the size

supported by the broker

27 ERR_TIMEOUT Timeout error

28 ERR_RETAIN_NOT_SUPPORTED Broker does not support retention

29 ERR_TOPIC_ALIAS_INVALID Topic is null or longer than 255 characters

30 ERR_ADMINISTRATIVE_ACTION Abnormal administrator privileges

31 ERR_ALREADY_EXISTS Already exists

200 ERR_NOT_READY Not ready to transfer commands

202 ERR_PAYLOAD_IS_NULL Payload pointer not set

203 ERR_MAX_PROSECC_OVER Exceeded number of concurrent executions

1001 ERR_CONNECTION_PROTOCOL Connection return code (protocol level error)

1002 ERR_CONNECTION_CLIENT_ID Connection return code

(client identifier error)

1003 ERR_CONNECTION_MQTT_SERVICE Connection return code

(MQTT service unavailable)

1004 ERR_CONNECTION_USER_PASS Connection return code

(username, password error)

1005 ERR_CONNECTION_UNAUTH_CLIENT Connection return code (bad client)

1200 ERR_SUBACK_FAILURE SUBACK reception failure flag

Control programming MQTT communication program

230

7.15.4. Sample program summary

An example of creating a communication program with the test broker, test.mosquitto.org, is

shown below. By subscribing in advance to the topic to be published, the same processing

as the echo server is performed to confirm that publishing and subscribing are performed

normally. Use "PLC Standard project" as a template.

Fig. 7.130 Overview of MQTT communication sample program

7.15.5. Sample program

The sample program uses the following libraries. Please add the library.

【Used library】

Library Name Purpose

SanMQTT To use the function block that performs MQTT communication

SysMem To copy received data to local variables by memory control

Write the following in PLC_PRG.

【Declaration section】

VAR

SampleServer : SanMQTT.SERVER_REF := (HostName := 'test.mosquitto.org', PortNo := 1883,

ProtoVer := SanMQTT.Protocol_Version.mqtt_v5);

 CONNECT : SanMQTT.CONNECT;

 PUBLISH : SanMQTT.PUBLISH;

 SUBSCRIBE : SanMQTT.SUBSCRIBE;

 SendData : STRING := '{"massage": "hello"}';

 RecvData : STRING;

 PropHandle : SanMQTT.RTS_IEC_HANDLE;

 CurrPropHandle : SanMQTT.RTS_IEC_HANDLE;

 CurrPropId : SanMQTT.Properties;

 xSendPublish : BOOL;

 SendPropValue : STRING := 'test';

 stpRecvPropName : STRING;

 stpRecvPropValue : STRING;

 byRecvPropValue : BYTE;

 stRecvPropValue : STRING;

END_VAR

MQTT communication program Control programming

231

【Implementation section】

CONNECT(SERVER:= SampleServer, Enable := TRUE);

SUBSCRIBE(SERVER:= SampleServer, Execute := CONNECT.Connetcted, Topic:= 'myTest', QoS:= 2);

PUBLISH(SERVER:= SampleServer, Execute := xSendPublish, Topic:= 'myTest', ptPayload:= ADR(SendData), Payloadlen:=

INT_TO_UINT(LEN(SendData)), QoS:= 2, Prop:= PropHandle);

IF xSendPublish THEN

 xSendPublish := FALSE;

 PropHandle := SanMQTT.prop_free(Handle:= ADR(PropHandle));

 SanMQTT.prop_add_byte(Handle:= ADR(PropHandle), PropertyId:= SanMQTT.Properties.PayloadFormatIndicator, Value:= 0);

 SanMQTT.prop_add_string(Handle:= ADR(PropHandle), PropertyId:= SanMQTT.Properties.ContentType, Value:= 'application/json');

 SanMQTT.prop_add_string_pair(Handle:= ADR(PropHandle), PropertyId:= SanMQTT.Properties.UserProperty, Name:= 'UserProperty', Value:= 'test');

END_IF

IF CONNECT.RecvStatus THEN

 SysMemCpy(pDest:= ADR(RecvData), pSrc:= CONNECT.RecvData.ptPayload, udiCount:= CONNECT.RecvData.PayloadNum);

 SysMemSet(pDest:= ADR(RecvData)+CONNECT.RecvData.PayloadNum, udiValue:= 0, udiCount:= 1);

 CurrPropHandle := CONNECT.RecvData.Prop;

 REPEAT

 CurrPropId := SanMQTT.prop_get_identifier(PropAddress:= CurrPropHandle);

 CASE CurrPropId OF

 SanMQTT.Properties.PayloadFormatIndicator : SanMQTT.prop_read_byte(Handle:= CurrPropHandle, PropertyId:= CurrPropId, Value:=

ADR(byRecvPropValue));

 SanMQTT.Properties.ContentType : SanMQTT.prop_read_string(Handle:= CurrPropHandle, PropertyId:= CurrPropId,

Value:= ADR(stRecvPropValue));

 SanMQTT.Properties.UserProperty : SanMQTT.prop_read_string_pair(Handle:= CurrPropHandle, PropertyId:= CurrPropId,

Name:= ADR(stpRecvPropName), Value:= ADR(stpRecvPropValue));

 END_CASE

 CurrPropHandle := SanMQTT.prop_get_next_address(PropAddress:= CurrPropHandle);

 UNTIL

 CurrPropHandle = 0

 END_REPEAT

END_IF

7.15.6. Operation chek

The sample program starts connecting to test.mosquitto.org as soon as the PLC application

starts, and subscribes to the topic 'myTest' when the connection is complete.After completing

the above process, set xSendPublish to TRUE at any time.If the communication is successful,

the published data (payload and properties) is returned as-is.

Fig. 7.131 MQTT communication received data

Received data

For RTC Setting Limitations

233

8. Limitations

8.1. For RTC Setting

This S200 manages RTC with UTC. When RTC (real time clock) is set with the following FB

or function by setting time zones other than UTC, RTC will be set in local time. Even when

using the PLC Shell command "rtc - set", the above phenomenon occurs.

To set the RTC, set the UTC time by setting the time zone to UTC.

Library POU

CAA Real Time Clock Extern Library

CAA DTUtil Extern Library

SetDateAndTime

SysTimeRtc SysTimeRtcSet

SysRTC23 SysRtcSetTime

8.2. Regarding homing

There are restrictions on homing to the following SANYO DENKI Servo Amplifier.

8.2.1. RS2 series (Model Number：RS2*****K**)

Homing method 35 (homing on current position) can not be performed when the firmware

amplifier revision is before "H". It can be executed with "J" or later firmware amplifier revision.

If you are using a firmware amplifier revision before “H', please contact us.

Also, if you are using an absolute system, please write "0x65766173" in Sub-Idx01(All

parameters storage) of OD:0x1010 (parameter storage) after homing. It takes about 10

seconds to write.For details, please refer to the instruction manual of type K of RS2

(M0008888G).

8.2.2. Homing of SANMOTION EtherCAT slave

When performing homing with SANMOTION EtherCAT slave, use SanHome(FB) instead of

MC_Home(FB). If MC_Home(FB) is used, it may not work properly.

For details of SanHome(FB), refers to”9.2.1.11 SanHome”

8.2.3. Cancellation of MC_Home_SML

If the homing operation is canceled by MC_Stop_SML(FB), quick stop, or servo off, homing

cannot be performed again. By writing FALSE to "bStartHoming" of the axis reference, the

homing can be executed again.

If the homing operation by MC_Home_SML(FB) is canceled by turning the servo off, it is

necessary to set a waiting time of at least 1 second before turning the servo on again. If the

servo-on timing is too early, homing cannot be performed.

For details of MC_Home_SML(FB), refers to "9.2.2.3 MC_Home_SML".

Limitations Regarding visualization

234

8.3. Regarding visualization

8.3.1. Antialiasing settings

There is a setting of "Antialiased drawing" in the setting item of Web visualization. There is

no clear difference in drawing due to setting changes, but it is recommended to always

enable it.

8.3.2. Regarding ActiveX elements

There is ActiveX as a visualization element, but it cannot be used because it does not support

this element.

8.4. Regarding retain variables

The S200 uses the nonvolatile memory FeRAM as the storage destination for the retain

variables to eliminate the trouble of losing the retain variable value due to the low battery

level and the need for battery replacement work.

When there is space in the execution process, the retain variable value is reflected in FeRAM.

If the power is turned off immediately after changing the retain variable value, the power may

be turned off before it is reflected in FeRAM. In that case, it will start with the value before

the change.

Therefore, if you change the retain variable, wait a few seconds before shutting off the power

(if the retain variable is used a lot, the time required for reflection will be longer).

8.5. Invert direction parameter of the SML axis

Do not enable the "Reverse direction" parameter of SML. If it is enabled, unexpected

behavior may occur. If you want to set the direction of rotation to be reversed, set it on the

EtherCAT slave side.

Fig 8.1 Unavailable parameters in SML axis

8.6. Ethernet communication after startup

The Ethernet communication that is executed immediately after startup may cause

communication errors due to the limited processing capacity. For this reason, please wait a

few seconds after startup before executing Ethernet communication.

Time zone list Appendix

235

9. Appendix

9.1. Time zone list

The list of time zones that can be set with this S200 is shown below. The default value is

"Asia/Tokyo" highlighted in yellow.

Africa/Abidjan Africa/Niamey America/Chihuahua

Africa/Accra Africa/Nouakchott America/Costa_Rica

Africa/Addis_Ababa Africa/Ouagadougou America/Creston

Africa/Algiers Africa/Porto-Novo America/Cuiaba

Africa/Asmara Africa/Sao_Tome America/Curacao

Africa/Bamako Africa/Tripoli America/Danmarkshavn

Africa/Bangui Africa/Tunis America/Dawson

Africa/Banjul Africa/Windhoek America/Dawson_Creek

Africa/Bissau America/Adak America/Denver

Africa/Blantyre America/Anchorage America/Detroit

Africa/Brazzaville America/Anguilla America/Dominica

Africa/Bujumbura America/Antigua America/Edmonton

Africa/Cairo America/Araguaina America/Eirunepe

Africa/Casablanca America/Argentina/Buenos_Aires America/El_Salvador

Africa/Ceuta America/Argentina/Catamarca America/Fort_Nelson

Africa/Conakry America/Argentina/Cordoba America/Fortaleza

Africa/Dakar America/Argentina/Jujuy America/Glace_Bay

Africa/Dar_es_Salaam America/Argentina/La_Rioja America/Godthab

Africa/Djibouti America/Argentina/Mendoza America/Goose_Bay

Africa/Douala America/Argentina/Rio_Gallegos America/Grand_Turk

Africa/El_Aaiun America/Argentina/Salta America/Grenada

Africa/Freetown America/Argentina/San_Juan America/Guadeloupe

Africa/Gaborone America/Argentina/San_Luis America/Guatemala

Africa/Harare America/Argentina/Tucuman America/Guayaquil

Africa/Johannesburg America/Argentina/Ushuaia America/Guyana

Africa/Juba America/Aruba America/Halifax

Africa/Kampala America/Asuncion America/Havana

Africa/Khartoum America/Atikokan America/Hermosillo

Africa/Kigali America/Bahia America/Indiana/Indianapolis

Africa/Kinshasa America/Bahia_Banderas America/Indiana/Knox

Africa/Lagos America/Barbados America/Indiana/Marengo

Africa/Libreville America/Belem America/Indiana/Petersburg

Africa/Lome America/Belize America/Indiana/Tell_City

Africa/Luanda America/Blanc-Sablon America/Indiana/Vevay

Africa/Lubumbashi America/Boa_Vista America/Indiana/Vincennes

Africa/Lusaka America/Bogota America/Indiana/Winamac

Africa/Malabo America/Boise America/Inuvik

Africa/Maputo America/Cambridge_Bay America/Iqaluit

Africa/Maseru America/Campo_Grande America/Jamaica

Africa/Mbabane America/Cancun America/Juneau

Africa/Mogadishu America/Caracas America/Kentucky/Louisville

Africa/Monrovia America/Cayenne America/Kentucky/Monticello

Africa/Nairobi America/Cayman America/Kralendijk

Appendix Time zone list

236

Africa/Ndjamena America/Chicago America/La_Paz

America/Lima America/St_Barthelemy Asia/Damascus

America/Los_Angeles America/St_Johns Asia/Dhaka

America/Lower_Princes America/St_Kitts Asia/Dili

America/Maceio America/St_Lucia Asia/Dubai

America/Managua America/St_Thomas Asia/Dushanbe

America/Manaus America/St_Vincent Asia/Famagusta

America/Marigot America/Swift_Current Asia/Gaza

America/Martinique America/Tegucigalpa Asia/Hebron

America/Matamoros America/Thule Asia/Ho_Chi_Minh

America/Mazatlan America/Thunder_Bay Asia/Hong_Kong

America/Menominee America/Tijuana Asia/Hovd

America/Merida America/Toronto Asia/Irkutsk

America/Metlakatla America/Tortola Asia/Jakarta

America/Mexico_City America/Vancouver Asia/Jayapura

America/Miquelon America/Whitehorse Asia/Jerusalem

America/Moncton America/Winnipeg Asia/Kabul

America/Monterrey America/Yakutat Asia/Kamchatka

America/Montevideo America/Yellowknife Asia/Karachi

America/Montserrat Antarctica/Casey Asia/Kathmandu

America/Nassau Antarctica/Davis Asia/Khandyga

America/New_York Antarctica/DumontDUrville Asia/Kolkata

America/Nipigon Antarctica/Macquarie Asia/Krasnoyarsk

America/Nome Antarctica/Mawson Asia/Kuala_Lumpur

America/Noronha Antarctica/McMurdo Asia/Kuching

America/North_Dakota/Beulah Antarctica/Palmer Asia/Kuwait

America/North_Dakota/Center Antarctica/Rothera Asia/Macau

America/North_Dakota/

New_Salem

Antarctica/Syowa Asia/Magadan

America/Ojinaga Antarctica/Troll Asia/Makassar

America/Panama Antarctica/Vostok Asia/Manila

America/Pangnirtung Arctic/Longyearbyen Asia/Muscat

America/Paramaribo Asia/Aden Asia/Nicosia

America/Phoenix Asia/Almaty Asia/Novokuznetsk

America/Port-au-Prince Asia/Amman Asia/Novosibirsk

America/Port_of_Spain Asia/Anadyr Asia/Omsk

America/Porto_Velho Asia/Aqtau Asia/Oral

America/Puerto_Rico Asia/Aqtobe Asia/Phnom_Penh

America/Punta_Arenas Asia/Ashgabat Asia/Pontianak

America/Rainy_River Asia/Atyrau Asia/Pyongyang

America/Rankin_Inlet Asia/Baghdad Asia/Qatar

America/Recife Asia/Bahrain Asia/Qyzylorda

America/Regina Asia/Baku Asia/Riyadh

America/Resolute Asia/Bangkok Asia/Sakhalin

America/Rio_Branco Asia/Barnaul Asia/Samarkand

America/Santarem Asia/Beirut Asia/Seoul

America/Santiago Asia/Bishkek Asia/Shanghai

America/Santo_Domingo Asia/Brunei Asia/Singapore

America/Sao_Paulo Asia/Chita Asia/Srednekolymsk

America/Scoresbysund Asia/Choibalsan Asia/Taipei

Time zone list Appendix

237

America/Sitka Asia/Colombo Asia/Tashkent

Asia/Tbilisi Europe/Dublin Indian/Chagos

Asia/Tehran Europe/Gibraltar Indian/Christmas

Asia/Thimphu Europe/Guernsey Indian/Cocos

Asia/Tokyo Europe/Helsinki Indian/Comoro

Asia/Tomsk Europe/Isle_of_Man Indian/Kerguelen

Asia/Ulaanbaatar Europe/Istanbul Indian/Mahe

Asia/Urumqi Europe/Jersey Indian/Maldives

Asia/Ust-Nera Europe/Kaliningrad Indian/Mauritius

Asia/Vientiane Europe/Kiev Indian/Mayotte

Asia/Vladivostok Europe/Kirov Indian/Reunion

Asia/Yakutsk Europe/Lisbon Pacific/Apia

Asia/Yangon Europe/Ljubljana Pacific/Auckland

Asia/Yekaterinburg Europe/London Pacific/Bougainville

Asia/Yerevan Europe/Luxembourg Pacific/Chatham

Atlantic/Azores Europe/Madrid Pacific/Chuuk

Atlantic/Bermuda Europe/Malta Pacific/Easter

Atlantic/Canary Europe/Mariehamn Pacific/Efate

Atlantic/Cape_Verde Europe/Minsk Pacific/Enderbury

Atlantic/Faroe Europe/Monaco Pacific/Fakaofo

Atlantic/Madeira Europe/Moscow Pacific/Fiji

Atlantic/Reykjavik Europe/Oslo Pacific/Funafuti

Atlantic/South_Georgia Europe/Paris Pacific/Galapagos

Atlantic/St_Helena Europe/Podgorica Pacific/Gambier

Atlantic/Stanley Europe/Prague Pacific/Guadalcanal

Australia/Adelaide Europe/Riga Pacific/Guam

Australia/Brisbane Europe/Rome Pacific/Honolulu

Australia/Broken_Hill Europe/Samara Pacific/Kiritimati

Australia/Currie Europe/San_Marino Pacific/Kosrae

Australia/Darwin Europe/Sarajevo Pacific/Kwajalein

Australia/Eucla Europe/Saratov Pacific/Majuro

Australia/Hobart Europe/Simferopol Pacific/Marquesas

Australia/Lindeman Europe/Skopje Pacific/Midway

Australia/Lord_Howe Europe/Sofia Pacific/Nauru

Australia/Melbourne Europe/Stockholm Pacific/Niue

Australia/Perth Europe/Tallinn Pacific/Norfolk

Australia/Sydney Europe/Tirane Pacific/Noumea

Europe/Amsterdam Europe/Ulyanovsk Pacific/Pago_Pago

Europe/Andorra Europe/Uzhgorod Pacific/Palau

Europe/Astrakhan Europe/Vaduz Pacific/Pitcairn

Europe/Athens Europe/Vatican Pacific/Pohnpei

Europe/Belgrade Europe/Vienna Pacific/Port_Moresby

Europe/Berlin Europe/Vilnius Pacific/Rarotonga

Europe/Bratislava Europe/Volgograd Pacific/Saipan

Europe/Brussels Europe/Warsaw Pacific/Tahiti

Europe/Bucharest Europe/Warsaw Pacific/Tarawa

Europe/Budapest Europe/Zagreb Pacific/Tongatapu

Europe/Busingen Europe/Zaporozhye Pacific/Wake

Europe/Chisinau Europe/Zurich Pacific/Wallis

Europe/Copenhagen Indian/Antananarivo UTC

Appendix Library for motion Control

238

9.2. Library for motion Control

This library contains function blocks corresponding to the PLCopen standard “Function

Blocks for Motion Control” definated function blocks for motion control.

!

DANGER!

• The function blocks included in this library must be used with "EtherCAT Task".

If the function block is executed by other than "EtherCAT Task", unexpected behavior may occur.

9.2.1. Function block for single axis control

9.2.1.1. MC_Power

MC_Power is designed for controlling the power stage (“on” or “off”).

Fig.9.1 MC_Power

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Enable BOOL TRUE：Enables the execution of the FB.

bRegulatorOn BOOL TRUE：Enables the power stage.

bDriveStart BOOL TRUE：Disables the quickstop mechanism.

Note: Both "MC_Power.bRegulatorON" and

"MC_Power.bDriveStart" must be TRUE for

servo on.

After the axis has stopped due to a quick

stop, set both bRegulatorOn and

bDriveStart to FALSE before restarting

operation.

VAR_OUTPUT

Status BOOL TRUE：Axis is ready to move.

bRegulatorOnRealState BOOL TRUE：The power stage has been switched

on.

bDriveStartRealState BOOL TRUE：Drive is not blocked by the

quickstop mechanism.

Busy BOOL TRUE：Execution of the function block has

not been finished yet.

Error BOOL TRUE：Error has occurred within the

function block during execution.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

239

9.2.1.2. MC_Reset

This function block designed for the transition from state errorstop to standstill by resetting

all internal axis-related errors.

Fig.9.2 MC_Reset

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge： Starts the execution of the FB.

VAR_OUTPUT

Done BOOL TRUE： Reset has been executed.

Busy BOOL
TRUE： Execution of the function block has not been

finished.

Error BOOL TRUE： Error has occurred within the function block.

ErrorID SMC_ERROR Error identification

9.2.1.3. MC_Home

This function block triggers the “search home” sequence of an axis. Upon successful

termination of the homing sequence the axis is in state “StandStill” .This is a precondition

that absolute movements (e.g. wie MC_MoveAbsolute_J, MC_GearInPos) can be applied

on an axis.

Fig.9.3 MC_Home

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Position LREAL Absolute position when the reference signal is detected [u].

VAR_OUTPUT

Done BOOL TRUE： standstill has been achieved.

Busy BOOL
TRUE： Execution of function block has not been

finished.

CommandAborted BOOL
TRUE： Command has been aborted by another

command.

Error BOOL TRUE： Error has occurred within the function block.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

240

9.2.1.4. MC_Stop

MC_Stop places the axis in the stopping state. As a result, currently running motions of

function block instances are aborted. （Please refer to 7.2.2.4The state diagram）。

Fig.9.4 MC_Stop

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Deceleration LREAL Deceleration [User Unit/s2]

Jerk LREAL Jerk always positive in [User Unit/s2]

VAR_OUTPUT

Done BOOL TRUE：Axis has reached the velocity 0.

Busy BOOL TRUE： Function block is in operation.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

9.2.1.5. MC_Halt

This function block stops the referenced axis in a controlled manner. If actions of other

function blocks are running at this time, the actions are aborted.

Fig.9.5 MC_Halt

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Deceleration LREAL Modulo value of the deceleration in [User Unit/s2]

Jerk LREAL Jerk in [User Unit/s3]

VAR_OUTPUT

Done BOOL TRUE： Velocity 0 has been achieved

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL
TRUE： Execution has been interrupted by another

function block instance operating on the axis.

Error BOOL TRUE:： Error has occurred.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

241

9.2.1.6. MC_MoveAbsolute

This function block causes the axis to be moved to an absolute position and uses the values

for Velocity, Deceleration, Acceleration and Jerk.

Fig.9.6 MC_MoveAbsolute

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Position LREAL Target position of the motion [User Unit]

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

Jerk LREAL Jerk in [User Unit/s3]

Direction MC_Direction

Direction of movement

fastest: Automatically select the one that

reaches the target position faster (modulo axis

only)

current: Current movement direction (modulo

axes only)

positive: positive rotation direction

shortest: Shortest direction (modulo axis only)

negative: Negative rotation direction

BufferMode MC_BUFFER_MODE

Define the time series sequence of FB to the

previous block.

BufferMode=Aborting is only allowed if the FB

is busy.

VAR_OUTPUT

Done BOOL TRUE： End position has been achieved.

Busy BOOL TRUE： Function block is in operation.

Active BOOL
State in which the function block controls the

axis

CommandAborted BOOL
TRUE： The execution is interrupted by an

other function block.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

242

9.2.1.7. MC_MoveRelative

This function block commands a controlled motion of a specified distance relative to the set

position at the time of the execution. The motion ends with velocity is 0.

Fig.9.7 MC_MoveRelative

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Distance LREAL
Relative distance for the motion in technical

unit [User Unit]

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

Jerk LREAL Jerk always positive in [User Unit/s3]

BufferMode MC_BUFFER_MODE

Define the time series sequence of FB to the

previous block.

BufferMode=Aborting is only allowed if the

FB is busy.

VAR_OUTPUT

Done BOOL TRUE： End position has been achieved.

Busy BOOL TRUE： Function block is in operation.

Active BOOL
State in which the function block

controls the axis

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

the axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

243

9.2.1.8. MC_MoveAdditive

This function block causes a controlled motion that adds the specified distance to the last

specified target position. The axis is thereby in the discrete_motion mode. The current target

position can result from a preceding motion of MC_MoveAdditive that was aborted. If the function

block runs in the continuous_motion mode, the specified distance is added to the current position

during the processing time.

Fig.9.8 MC_MoveAdditive

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Distance LREAL
Relative distance for the motion in technical

unit [User Unit]

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

Jerk LREAL Is always positive in [User Unit/s3]

VAR_OUTPUT

Done BOOL TRUE： Distance has been achieved.

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

the axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

244

9.2.1.9. MC_MoveVelocity

This function block causes an endless motion at a specified velocity.

Fig.9.9 MC_MoveVelocity

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

Jerk LREAL Jerk [User Unit/s3]

Direction MC_Direction

Permitted values for MC_DIRECTION

・positive

・negative

・current

・shortest: Sets to a track that describes

the ・shortest path. The choice of

direction is based on the position at the

time of the command call.

BufferMode MC_BUFFER_MODE

Define the time series sequence of FB to the

previous block.

BufferMode=Aborting is only allowed if the

FB is busy.

VAR_OUTPUT

InVelocity BOOL
TRUE： The set velocity has been reached

for the first time.

Busy BOOL TRUE： Function block is in operation.

Active BOOL
State in which the function block

controls the axis

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

Axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

245

9.2.1.10. MC_Jog

MC_Jog causes a continuous motion on the axis.

Fig. 9.1 MC_Jog

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

JogForward BOOL TRUE： Axis is moved with the specified

dynamic values Velocity, Acceleration,

Deceleration and Jerk in a positive direction.

JogBackward BOOL TRUE： Axis is moved with the specified

dynamic values Velocity, Acceleration,

Deceleration and Jerk in a negative direction.

No motion is executed if JogForward is TRUE

at the same time.

Velocity LREAL Velocity in [User Unit/s]

Acceleration LREAL Acceleration in [User Unit/s2]

Deceleration LREAL Deceleration in [User Unit/s2]

Jerk LREAL Jerk in [User Unit/s3]

VAR_OUTPUT

Busy BOOL

TRUE： Function block is in operation during

an active motion after JogForward or

JogBackward has been set.

FALSE： Axis has been decelerated to velocity

value zero after JogForward or JogBackward

has been set to FALSE.

CommandAborted BOOL

TRUE： Execution is interrupted by another

function block instance operating on Axis.

CommandAborted remains set as long as

JogForward or JogBackward has been set but

for at least one cycle`.

Error BOOL

TRUE: Error has occurred while JogForward or

JogBackward has been set for at least one

cycle

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

246

9.2.1.11. SanHome

This function block is used to perform homing with SAN MOTION EtherCAT slave. The basic

operation is the same as MC_Home (FB). It is included in IoSanyoDevice.lib.

Fig.9.10 MC_Home

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Position LREAL
Absolute position when the reference signal is

detected [u].

VAR_OUTPUT

Done BOOL TRUE： standstill has been achieved.

Busy BOOL
TRUE： Execution of function block has not

been finished.

CommandAborted BOOL
TRUE： Command has been aborted by

another command.

Error BOOL
TRUE： Error has occurred within the function

block.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

247

9.2.2. PTP control function block

9.2.2.1. MC_Power_SML

MC_Power is designed for controlling the power stage (“on” or “off”).

Fig 9.11 MC_Power_SML

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Enable BOOL TRUE：Enables the execution of the FB.

bRegulatorOn BOOL TRUE：Enables the power stage.

bDriveStart BOOL TRUE：Disables the quickstop mechanism.

Note: Both "MC_Power.bRegulatorON" and

"MC_Power.bDriveStart" must be TRUE for

servo on.

After the axis has stopped due to a quick

stop, set both bRegulatorOn and

bDriveStart to FALSE before restarting

operation.

VAR_OUTPUT

Status BOOL TRUE：Axis is ready to move.

bRegulatorOnRealState BOOL TRUE：The power stage has been

switched on.

bDriveStartRealState BOOL TRUE：Drive is not blocked by the

quickstop mechanism.

Busy BOOL TRUE：Execution of the function block has

not been finished yet.

Error BOOL TRUE：Error has occurred within the

function block during execution.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

248

9.2.2.2. MC_Reset_SML

This function block designed for the transition from state errorstop to standstill by resetting

all internal axis-related errors.

Fig 9.12 MC_Reset_SML

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge：Starts the execution of the FB.

VAR_OUTPUT

Done BOOL TRUE： Reset has been executed.

Busy BOOL
TRUE： Execution of the function block has not been

finished.

Error BOOL TRUE： Error has occurred within the function block.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

249

9.2.2.3. MC_Home_SML

This function block triggers the “search home” sequence of an axis. Upon successful

termination of the homing sequence the axis is in state “StandStill” .This is a precondition

that absolute movements (e.g. wie MC_MoveAbsolute_J, MC_GearInPos) can be applied

on an axis.

Fig 9.13 MC_Home_SML

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB..

Position LREAL Absolute position when the reference signal is detected [u].

VAR_OUTPUT

Done BOOL TRUE： standstill has been achieved.

Busy BOOL TRUE： Execution of function block has not been finished.

CommandAborted BOOL
TRUE： Command has been aborted by another

command.

Error BOOL TRUE： Error has occurred within the function block.

ErrorID SMC_ERROR Error identification

Refer to "8.2.3 Cancellation of MC_Home_SML" for restrictions on canceling the homing

operation.

Appendix Library for motion Control

250

9.2.2.4. MC_Stop_SML

MC_Stop places the axis in the stopping state. As a result, currently running motions of

function block instances are aborted. （Please refer to 7.2.2.4The state diagram）

Fig.9.14 MC_Stop_SML

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

VAR_OUTPUT

Done BOOL TRUE：Axis has reached the velocity 0.

Busy BOOL TRUE： Function block is in operation.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

9.2.2.5. MC_Halt_SML

This function block stops the referenced axis in a controlled manner. If actions of other

function blocks are running at this time, the actions are aborted.

Fig.9.15 MC_Halt

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Deceleration LREAL Modulo value of the deceleration in [User Unit/s2]

VAR_OUTPUT

Done BOOL TRUE： Velocity 0 has been achieved

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL
TRUE： Execution has been interrupted by another

function block instance operating on the axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Only available when operating in profile velocity mode. Use MC_Stop_SML to stop profile

position mode and homing mode operation.

Library for motion Control Appendix

251

9.2.2.6. MC_MoveAbsolute_SML

This function block causes the axis to be moved to an absolute position and uses the values

for Velocity, Deceleration, Acceleration and Jerk.

Fig.9.16 MC_MoveAbsolute

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Position LREAL Target position of the motion [User Unit]

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

VAR_OUTPUT

Done BOOL TRUE： End position has been achieved.

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL
TRUE： The execution is interrupted by an

other function block.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

252

9.2.2.7. MC_MoveRelative_SML

This function block commands a controlled motion of a specified distance relative to the set

position at the time of the execution. The motion ends with velocity is 0.

Fig 9.17 MC_MoveRelative

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Distance LREAL
Relative distance for the motion in technical

unit [User Unit]

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

VAR_OUTPUT

Done BOOL TRUE： End position has been achieved.

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

the axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

253

9.2.2.8. MC_MoveVelocity_SML

This function block causes an endless motion at a specified velocity.

Fig 9.18 MC_MoveVelocity

VAR_IN_OUT

Axis AXIS_REF_SML Reference to axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Velocity LREAL Maximum velocity [User Unit/s]

Acceleration LREAL Acceleration [User Unit/s2]

Deceleration LREAL Deceleration [User Unit/s2]

VAR_OUTPUT

InVelocity BOOL
TRUE： The set velocity has been reached for

the first time.

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

Axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

After stopping the operation in the profile velocity mode by turning the servo off, when the

servo is turned on again, the operation resumes at the velocity before stopping.

If you do not want to restart the operation when the servo is turned on, set the target

velocity to 0 using one of the methods below.

1. Execute MC_Stop_SML during stop. (MC_Stop_SML will output an error)

2. Write 0 to "rpTargetVelocity.fVal" of the axis reference.

Appendix Library for motion Control

254

9.2.2.9. SML_SetOpmode

Sets the mode of operation to a new value, if necessary.

Fig 9.19 SML_SetOpmode

VAR_IN_OUT

Axis AXIS_REF_SML Reference to the axis

VAR_INPUT

bExecute BOOL Operates on the rising edge

eOpmode SML_OPMODE The desired mode of operation

VAR_OUTPUT

bBusy BOOL
The FB is not finished and new output values

are to be expected

bDone BOOL
The mode of operation has been successfully

set

Error BOOL An error has occured

ErrorID SMC_ERROR Error number

In PTP control, when executing an FB of an operation mode different from the current

operation mode, it is necessary to change the operation mode in advance. For example,

you need to change to the homing mode before execute homing. If you want to perform

position control after homing in homing mode, you need to change to profile position mode

in advance.

Library for motion Control Appendix

255

9.2.3. Function block for multi-axis control

9.2.3.1. MC_GearIn

The function block couples the slave axis to the master axis specifying a certain velocity

transmission ratio and applies a certain velocity ratio between master and slave velocity.

Fig.9.20 MC_GearIn

VAR_IN_OUT

Master
AXIS_REF_SM3 Reference to master axis. Master needs not to

be stationary.

Slave AXIS_REF_SM3 Reference to slave axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

RatioNumerator DINT
Numerator of the quotient for the desired

transmission ratio

RatioDenominator UDINT
Numerator of the quotient for the desired

transmission ratio

Acceleration LREAL
Target acceleration when coupling [User

Unit/s2] （>0）

Deceleration LREAL
Target deceleration when coupling [User

Unit/s2] （>0）

Jerk LREAL Jerk in [User Unit/s3]

BufferMode MC_BUFFER_MODE

Define the time series sequence of FB to the

previous block.

BufferMode=Aborting is only allowed if the FB

is busy.

VAR_OUTPUT

InGear BOOL TRUE： Coupling has taken place.

Active BOOL
State in which the function block controls the

axis

Busy BOOL TRUE： Function block is in operation.

CommandAborted BOOL

TRUE： Execution has been interrupted by

another function block instance operating on

the axis.

Error BOOL TRUE： Error has occurred.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

256

9.2.3.2. MC_GearInPos

MC_GearInPos couples the slave axis to the master axis taking into account a specific

positional relationship.

Fig.9.21 MC_GearInPos

VAR_IN_OUT

Master AXIS_REF_SM3 Reference to master axis

Slave AXIS_REF_SM3 Reference to slave axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

RatioNumerator DINT Gear ratio numerator

RatioDenominator DINT Gear ratio denominator

MasterSyncPosition LREAL
Master position where the axes run in sync. [User

Unit]

SlaveSyncPosition LREAL
Slave position where the axes run in sync. [User

Unit]

MasterStartDistance LREAL

Master distance for the gear in procedure (where

the slave axis will be started for getting into

synchronization). [User Unit]

BufferMode
MC_BUFFER_M

ODE

Define the time series sequence of FB to the

previous block.

BufferMode=Aborting is only allowed if the FB is

busy.

AvoidReversal BOOL

FALSE: Signals that the reversal of the slave is

physically possible and acceptable.

TRUE: Signals that the reversal of the module

slave is physically impossible or might lead to

damage.

VAR_OUTPUT

StartSync BOOL TRUE： Commanded gearing has been started.

InSync BOOL TRUE： Cmmanded gearing has been completed.

Busy BOOL
TRUE： Execution of the function block has not

been finished.

Active BOOL
State in which the function block controls the

axis

CommandAborted BOOL
TRUE： Command has been aborted by another

command.

Error BOOL
TRUE： Error has occurred within the function

block.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

257

9.2.3.3. MC_GearOut

This function block disengages the slave axis from the master axis.

Fig.9.22 MC_GearOut

VAR_IN_OUT

Slave AXIS_REF_SM3 Reference to slave axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

VAR_OUTPUT

Done BOOL TRUE： Cam has been disengaged.

Busy BOOL
TRUE： Execution of the function block has not

been finished.

Error BOOL
TRUE： Error has occurred within the function

block.

ErrorID SMC_ERROR Error identification

Appendix Library for motion Control

258

9.2.3.4. MC_CamTableSelect

This function block is designed for selecting the cam tables by setting connections to relevant

tables.

Fig.9.23 MC_CamTableSelect

VAR_IN_OUT

Master AXIS_REF_SM3 Reference to the master axis

Slave AXIS_REF_SM3 Reference to the slave axis

CamTable MC_CAM_REF Reference to the cam description

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

Periodic BOOL TRUE: Periodic FALSE: Non periodic

MasterAbsolute BOOL TRUE: Absolute FALSE: Relative coordinates

SlaveAbsolute BOOL TRUE: Absolute FALSE: Relative coordinates

VAR_OUTPUT

Done BOOL TRUE： Preselection has been done.

Busy BOOL TRUE： Execution of function block has not been

finished.

Error BOOL TRUE: Error has occurred within the function block.

ErrorID SMC_ERROR Error identification

CamTableID MC_CAM_ID Identifier of the cam table be used for the function

block.

Library for motion Control Appendix

259

9.2.3.5. MC_CamIn

This function block sets the cam table and implements synchronous operation.

Synchronize the slave axis with the master axis and control the slave axis with the set cam

table.

Fig.9.24 MC_CamIn

VAR_IN_OUT

Master
AXIS_REF_SM3 Reference to master axis. Master need not be

stationary.

Slave AXIS_REF_SM3 Reference to slave axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

MasterOffset LREAL Offset on master table

SlaveOffset LREAL Offset on slave table

MasterScaling LREAL Scaling factor for master profile

SlaveScaling LREAL Scaling factor for slave profile

StartMode MC_StartMode Start mode

CamTableID MC_CAM_ID Identification of the cam plate. The input is

connected with the output of the instance of

MC_CamTableSelect.

VelocityDiff LREAL Maximum velocity difference for ramp_in mode

in [User Unit/s]

Acceleration LREAL Acceleration for ramp_in mode in [User Unit/s2]

Deceleration LREAL Deceleration for ramp_in mode in [User Unit/s2]

Jerk LREAL Jerk for ramp_in mode in [User Unit/s3]

TappetHysteresis LREAL Size of the hysteresis for tappets in [u].

VAR_OUTPUT

InSync BOOL Cam has been engaged for the first time.

Busy BOOL TRUE： Execution of function block has not

been finished.

CommandAborted BOOL Command has been aborted by another

command

Error BOOL TRUE: Error has occured within the function

block.

ErrorID SMC_ERROR Error identification

EndOfProfile BOOL Pulsed output: Cyclic end of the cam profile.

Tappets SMC_TappetData Tappets: Has to be evaluated by

SMC_GetTappetValue function blocks.

Appendix Library for motion Control

260

9.2.3.6. MC_CamOut

This function block disengages the slave axis from the master axis immediately.

Fig.9.25 MC_CamOut

VAR_IN_OUT

Slave AXIS_REF_SM3 Reference to slave axis

VAR_INPUT

Execute BOOL Rising edge: Starts the execution of the FB.

VAR_OUTPUT

Done BOOL TRUE： Cam has been disengaged.

Busy BOOL
TRUE： Execution of function block has not

been finished.

Error BOOL
TRUE: Error has occurred within the function

block.

ErrorID SMC_ERROR Error identification

Library for motion Control Appendix

261

9.2.4. Function block for CNC control

9.2.4.1. SMC_Interpolator

This function block is used to convert a continuous path described by SMC_GEOINFO

objects into discrete path position points taking into account a defined velocity profile and

time pattern. Afterwards, these position points will typically be transformed by the IEC-

program (e.g. to drive-axis-positions) and sent to the drives.

Fig.9.26 SMC_Interpolator

VAR_INPUT

bExecute BOOL Rising edge: Starts the execution of the FB.

poqDataIn POINTER TO

SMC_OUTQUEUE

This variable points to the SMC_OUTQUEUE

structure object, which contains the

SMC_GEOINFO objects of the path; typically it

points to the output poqDataOut of

SMC_CheckVelocities .

bSlow_Stop BOOL If this variable is set to FALSE, the path will be

passed non-stop. Otherwise, the SMC_Interpolator

will be caused to reduce the velocity to 0 according

to the defined velocity profile (byVelMode), and the

maximum delay of the current SMC_GEOINFO

object (dDecel, see below) and to wait until

bSlow_Stop will be reset to FALSE.

bEmergency_Stop BOOL As soon as this input gets TRUE, the

SMC_Interpolator will cause an immediate stop,

this means that the position will be retained.

Hence, the velocity will be set to 0 immediately.

bWaitAtNextStop BOOL As long as this variable is FALSE (default), the

path is passed non-stop. Otherwise, the

SMC_Interpolator will be caused to retain the

position at the next regular stop this means at

position points where the velocity is 0, typically at

path angles and to pause until bWaitAtNextStop

will be reset to FALSE.

Appendix Library for motion Control

262

VAR_INPUT

dOverride LREAL This variable can be used to handle the override.

iVelMode SMC_INT_VELMODE This input defines the velocity profile as defined in

SMC_INT_VELMODE.

dwIpoTime DWORD This variable has to be set for each call. It

represents the cycle time in μsec.

dLastWayPos LREAL This input allows the user to measure the stretch of

the path that is racked out by the interpolator.

Output dWayPos is the sum of dLastWayPos and

the distance covered within the current cycle.

bAbort BOOL This input set to TRUE will abort the function block.

bSingleStep BOOL This input effects that the interpolator will stop at

the transition between two path objects (also at

transitions with identical tangent) for the duration of

one cycle.

bAcknM BOOL This input can be used to acknowledge an M-

function. If the input is TRUE, the output wM will be

cleared and the path processing will be continued.

bQuick_Stop BOOL If this input is TRUE, the interpolator will reduce

the velocity to zero, until bQuick_Stop is reset to

FALSE.

dQuickDeceleration LREAL Deceleration value used for bQuick_Stop [User

Unit/s2]

dJerkMax LREAL Magnitude of the maximum allowed jerk: It’s only

used for the quadratic velocity modes.

dQuickStopJerk LREAL The magnitude of the jerk is used by a quick stop

for ramping down the acceleration if one of the

quadratic velocity modes is selected.

bSuppressSystem

MFunctions

BOOL If this option is set, then the output wM will not be

set for internal M-functions created by G75 or G4

commands.

Library for motion Control Appendix

263

VAR_OUTPUT

bDone BOOL This variable will be set to TRUE as soon as the

input data (poqDataIn) has been processed

completely.

bBusy BOOL TRUE while execution of function block is not

finished

bError BOOL Signals that an error has occurred within the function

block

wErrorID SMC_ERROR Error identification

piSetPosition SMC_POSINFO It reflects the calculated set position and contains the

cartesian coordinates of the next position as well as

the state of the additional axis. SMC_POSINFO

iStatus SMC_INT_STATUS This enumeration variable reflects the current status

of the function block defined in SMC_INT_STATUS .

bWorking BOOL This output is intended to be connected to input

bEnable of SMC_ControlAxisByPos .

iActObjectSourceNo DINT Value of member iSourceLine_No of active

SMC_GEOINFO object of poqDataIn-queue.

(bWorking = FALSE), the value is set to “-1”.

dActObjectLength LREAL The length of the current object; valid if bWorking =

TRUE.

dActObjectLength

Remaining

LREAL The remaning length of the current object; valid if

bWorking = TRUE.

dVel LREAL This variable contains the current path velocity.

vecActTangent SMC_VECTOR3D This structure contains the path tangent, a unit

vector.

iLastSwitch INT This output contains the number of the last switch

passed.

dwSwitches DWORD This DWORD describes the current switch status of

all switches 1 32.

dWayPos LREAL See input dLastWAyPos.

wM WORD If the interpolator passes an M-function, this output

will be set to the value associated to the M-function.

adToolLength ARRAY [0..2] OF

 LREAL

Parameters for tool length compensation

Act_Object POINTER TO

SMC_GEOINFO

A pointer to the currently interpolated path element

Appendix Library for motion Control

264

9.2.4.2. SMC_TRAFO_XXXXX

This function block solves Reverse transformations of the robot(TCP⇒each axis position）.

“XXXXX” contains the name of the kinematics to be Reverse transformatio. （ e.g. ：

SMC_TRAFO_Gantry2）.

Fig.9.27 SMC_TRAFO_Gantry2

VAR_INPUT

pi SMC_PosInfo Target vector position (x,y), output of interpolator.

dOffsetX LREAL Additional offset for x-axis

dOffsetY LREAL Additional offset for y-axis

VAR_OUTPUT

dx LREAL Resulting position for x-axis

dy LREAL Resulting position for y-axis

Library for motion Control Appendix

265

9.2.4.3. SMC_TRAFOF_XXXXX

This function block solves Forward transformation of the robot(each axis position⇒TCP）.

“XXXXX” contains the name of the kinematics to be Reverse transformatio. （ e.g. ：

SMC_TRAFOF_Gantry2）.

Fig.9.28 SMC_TRAFOF_Gantry2

VAR_IN_OUT

DriveX AXIS_REF_SM3 xReference to axis

DriveY AXIS_REF_SM3 yReference to axis

VAR_INPUT

dOffsetX LREAL Offset x-position. Equivalent to

SMC_TRAFO_Gantry2

dOffsetY LREAL Offset y-position. Equivalent to

SMC_TRAFO_Gantry2

minX LREAL Lower bound of move range in x-direction (for

visualization purpose)

maxX LREAL Upper bound of move range in x-direction (for

visualization purpose)

minY LREAL Lower bound of move range in y-direction (for

visualization purpose)

maxY LREAL Upper bound of move range in y-direction (for

visualization purpose)

VAR_OUTPUT

dx LREAL X-position

dy LREAL Y-position

dnx LREAL Normed x-position (with value in [0,1])

dny LREAL Normed y-position (with value in [0,1])

ratio LREAL Ratio x-interval / y-interval

dnOffsetX LREAL X-offset for visualization

dnOffsetY LREAL Y-offset for visualization

Appendix Library for motion Control

266

9.2.4.4. SMC_ControlAxisByPos

The function block writes the set position fSetPosition to the drive structure Axis and

monitors Axis for jumps. SMC_ControlAxisByPos is mostly used with CNC and an instance

of the SMC_Interpolator.

Fig.9.29 SMC_ControlAxisByPos

VAR_IN_OUT

Axis AXIS_REF_SM3 Reference to axis

VAR_INPUT

iStatus SMC_INT_STATUS Status of the instance of SMC_Interpolator

bEnable BOOL TRUE： Starts execution

bAvoidGaps BOOL TRUE： Starts the monitoring of the position

fSetPosition LREAL Set position of the axis in [u]. Typically

connected to the output of the transformation

block

fGapVelocity LREAL Velocity for the bypassing of the jump in [User

Unit/s]

fGapAcceleration LREAL Acceleration for the bypassing of the jump in

[User Unit/s2]

fGapDeceleration LREAL Deceleration for the bypassing of the jump in

[User Unit/s2]

fGapJerk LREAL Jerk for the bypassing of the jump in [User

Unit/s3]

VAR_OUTPUT

bBusy BOOL TRUE： Function block operating

bCommandAborted BOOL TRUE： Execution was interrupted by another

function block instance operating on axis.

bError BOOL TRUE： Error has occurred

iErrorID SMC_ERROR Error identification

bStopIpo BOOL TRUE： Jump in velocity or position occurred

and adaptation to new position is running.

G code list Appendix

267

9.3. G code list

The following list shows the G codes that can be used with CNC.

Travel command Description Path element

G0 Direct movement without tool operation; linear motion Positioning

G1 Linear movement with tool operation Linear Motion

G2 Circular segment or circle, clockwise Arc

G3 Circle segment or circle, counterclockwise Arc

G4 Dwell time Dwell Time

G5 Point of a 2D cardinal spline Spline

G6 Parabola Parabola

G8 Ellipse segment or ellipse, clockwise Ellipse

G9 Ellipse segment or ellipse, counterclockwise Ellipse

G10 Point of a 3D cardinal spline Spline

G15 Switch to 2D 3D mode

G16 Switch to 3D by activating 3D mode with normal vector I/J/K to the

plane

3D mode

G17 Switch to 3D by activating 3D mode in X/Y plane 3D mode

G18 Switch to 3D by activating 3D mode in Z/X plane 3D mode

G19 Switch to 3D by activating 3D mode in Y/Z plane 3D mode

G20 Conditional jump to L, if K <> 0 Jump

G36 Write value D to variable O Changing Variable

Values

G37 Increment variable O by value D Jump

G40 End of tool radius compensation Preprocessing

G41 Start of tool radius compensation, left of travel direction Preprocessing

G42 Start of tool radius compensation, right of travel direction Preprocessing

G43 Starts tool length compensation. Preprocessing

G50 End of angle rounding/smoothing Preprocessing

G51 Start of angle rounding Preprocessing

G52 Start of angle smoothing Preprocessing

G53 End the coordinate transformation and resets the decoder

coordinate system to the original position (= machine coordinate

system).

Shifting, Rotating,

and Scaling the

Coordinate System

G54 Absolute transformation of the coordinates. Shifting, Rotating,

and Scaling the

Coordinate System

G55 Relative transformation of the coordinates. Shifting, Rotating,

and Scaling the

Coordinate System

G56 Sets the current orientation, position, and scaling of the DCS is set

as a reference point.

Shifting, Rotating,

and Scaling the

Coordinate System

G60 End of loop suppression Preprocessing

G61 Start of loop suppression Preprocessing

G70 End of smoothing additional axes. Preprocessing

G71 Start of smoothing additional axes. Preprocessing

G75 Timing synchronization with interpolator Timing

Synchronization

with Interpolator

Appendix G code list

268

Travel

command

Description Path element

G90 The coordinates (X/Y/Z/A/B/C/P/Q/U/V/W) are interpreted as absolute

values. (This is the default setting.)

Modes

G91 The coordinates (X/Y/Z/A/B/C/P/Q/U/V/W) are interpreted as values

relative to the current position.

Modes

G92 Positioning by jump Positioning

G98 The axis midpoints (I/J/K) are interpreted as absolute values. Modes

G99 The axis midpoints (I/J/K) are interpreted as values relative to the start

position. (This is the default setting.)

Modes

Instruction Appendix

269

9.4. Instruction

The instructions used in the ST language are as follows.

9.4.1. IF

The IF instruction is used to check a condition and, depending on this condition, to execute

instructions.

Syntax:

IF <boolean expression_1> THEN

 <IF-instructions>

 {ELSIF <boolean expression_2> THEN

 <ELSIF-instruction_1>

 ELSIF <boolean expression_n> THEN

 <ELSIF_instruction_n-1>

 ELSE

 <ELSE_instructions>}

 END_IF;

The section inside the curly parentheses {} is optional.

If <boolean expression_1> returns TRUE, Controller executes only the <IF_instructions> and

none of the other instructions.

Otherwise Controller checks the boolean expressions in succession, starting with <boolean

expression_2, until an expression returns TRUE. Subsequently, Controller evaluates all

instructions located between this expression and the next ELSE or ELSIF instruction and

executes them accordingly.

If none of the boolean expressions returns TRUE, Controller evaluates only the <ELSE

instructions>.

Appendix Instruction

270

9.4.2. CASE

Use this dialog box for pooling several conditional instructions containing the same condition

variable into a construct.

Syntax:

CASE <Var1> OF

<value1>:<instruction1>

<value2>:<instruction2>

<value3, value4, value5>:<instruction3>

<value6 ... value10>:<instruction4>

...

<value n>:<instruction n>

{ELSE <ELSE-instruction>}

END_CASE;

The section within the curly brackets {} is optional.

.Processing scheme of a CASE instruction.

 If the value of the variable <Var1> is <value i>, then the instruction <instruction i> is

executed.

 If the variable <Var1> has non of the given values, then the <ELSE-instruction> is executed.

 If the same instruction is executed for several values of the variable, then you can write the

values in sequence, seperated by commas.

Instruction Appendix

271

9.4.3. FOR

The FOR loop is used to execute instructions with a certain number of repetitions.

Syntax:

FOR <counter> := <start value> TO <end value> {BY <increment> } DO

<instructions>

END_FOR;

The section inside the curly parentheses {} is optional.

Controller executes the <instructions> as long as the <counter> is not greater, or - in case of

negative increment - is not smaller than the <end value>. This is checked before the

execution of the <instructions>.

Every time the instructions <instructions> have been executed, the counter <counter> is

automatically increased by the increment <increment>. The increment <increment> can have

any integral value. If you do not specify an increment, the standard increment is 1.

The end value <end value> may not attain the same value as the upper limit of the data

type of the counter.

For example, an endless loop results in the above example if counter is of the data type

SINT and the <end value> equals 127, since the data type SINT has the upper limit 127.

9.4.4. WHILE

The WHILE loop is used like the FOR loop in order to execute instructions several times until

the abort condition occurs. The abort condition of a WHILE loop is a boolean expression.

Syntax:

WHILE <boolean expression> DO

 <instructions>

 END_WHILE;

Controller repeatedly executes the <instructions> for as long as the <boolean expression>

returns TRUE. If the boolean expression is already FALSE at the first evaluation, then

Controller never executes the instructions. If the boolean expression never adopts the value

FALSE, then the instructions are repeated endlessly, as a result of which a runtime error

results.

Appendix Instruction

272

9.4.5. REPEAT

The REPEAT loop is used like the WHILE loop, but with the difference that Controller only

checks the abort condition after the execution of the loop. The consequence of this behavior

is that the REPEAT loop is executed at least once, regardless of the abort condition.

Syntax:

REPAEAT

<instructions>

 UNTIL <boolean expression>

 END_REPEAT;

Controller executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, Controller executes

the instructions precisely once. If the boolean expression never adopts the value TRUE, then

the instructions are repeated endlessly, as a result of which a runtime error results.

9.4.6. EXIT

The EXIT instruction is used in a FOR, WHILE or REPEAT loop in order to end the loop

regardless of other abort conditions.

Syntax:

WHILE TURE DO

IF bBreak THEN

 EXIT;

END_IF

END_WHILE

In this example, when “bBreak” becomes TRUE, it exits the WHILE loop.

Instruction Appendix

273

9.4.7. RETURN

Use the RETURN instruction in order to exit from a function block. You can make this

dependent on a condition, for example.

Syntax:

POU1

POU2

WHILE TURE DO

IF bReturn THEN

RETURN;

END_IF

END_WHILE

(*This is an unexecuted process *)

IF boolean expression THEN

< Process >

END_IF

●

POU3

In this example, when “bReturn” becomes TRUE in POU 2, it goes out of POU 2 and moves

to ●. Since RETURN exits POU when it is executed, processes after RETURN are not

executed.

Appendix Cast

274

9.5. Cast

Information can be lost when converting from larger data types to smaller data types. At

SANMOTION C Software Tool 2.0.0（e.g. INT type to BYTE type, DINT type to WORD type,

etc）. If you want to convert, a function for type conversion is necessary.

The name of the type conversion function is configured as follows.

“Data type before conversion”_TO_”Data type after conversion”

Open the Input Assistant dialog box by clicking “Edit” ⇒ “Input Assistant” Click “Conversion

Operators” to display a list of function for type conversion.

Fig.9.30 Input Assistant

＜Example＞

In case of ST：

i := BOOL_TO_INT(TRUE); (* The result is 1 *)

str := BOOL_TO_STRING(TRUE); (* The result is 'TRUE' *)

In case of FBD：

 (* The result is 1 *)

(* The result is 'TRUE' *)

Operators Appendix

275

9.6. Operators

9.6.1. List

Operators Detail

' String delimiter (e.g. 'string1')

[..] Specify array range (e.g. ARRAY [0..3] OF)

: Operands and types in declarative part (e.g. var1 : INT;)

; Command end symbol (e.g. var1 : INT;)

^ Indirect reference symbol of pointer (e.g. pointer1^)

AND This IEC operator is used for the bitwise AND of bit operands.

OR This IEC operator is used for the bitwise OR of bit operands.

XOR This IEC operator is used for the bitwise XOR of bit operands.

NOT This IEC operator is used for the bitwise NOT of a bit operand.

+，ADD This IEC operator is used for adding variables.

-，SUB This IEC operator is used for subtracting variables.

*，MUL This IEC operator is used for multiplying variables.

/，DIV This IEC operator is used for dividing variables.

>，GT This IEC operator is used for the “greater than” function.

>=，GE This IEC operator is used for the “greater than or equal to” function.

=，EQ This IEC operator is used for the “equals” function.

<>，NE This IEC operator is used for the “does not equal” function.

<=，LE This IEC operator is used for the “less than or equal to” function.

<，LT This IEC operator is used for the “less than” function.

MOD(in) This IEC operator is used for modulo division.

INDEXOF(in) This operator is an extension of the IEC 61131-3 standard.

SIZEOF(in) This operator is an extension of the IEC 61131-3 standard.

SHL(K,in) This IEC operator is used for bitwise shift of an operand to the left.

SHR(K,in) This IEC operator is used for bitwise shift of an operand to the right.

ROL(K,in) This IEC operator is used for bitwise rotation of an operand to the left.

ROR(K,in) This IEC operator is used for bitwise rotation of an operand to the right.

MAX(in0,in1) This IEC operator is used for the maximum function. It yields the largest

value of two values.

MIN(in0,in1) This IEC operator is used for the minimum function. It yields the smallest

value of two values.

LIMIT(MIN,in,Max) This IEC selection operator is used for limiting.

MUX(K,in0,...in_n) This IEC operator is used as a multiplexer.

ADR(in) ADR yields the address of its argument in a DWORD.

ADRINST() Output address of instance of function block

BITADR(in) BITADR yields the bit offset within a segment in a DWORD.

ABS(in) This IEC operator yields the absolute value of a number.

SQRT(in) This IEC of course yields the square root of a number.

LN(in) This IEC operator yields the natural logarithm of a number.

LOG(in) This IEC operator yields the base-10 logarithm of a number.

EXP(in) This IEC operator yields the exponential function.

SIN(in) This IEC operator yields the sine value of a number.

COS(in) This IEC operator yields the cosine value of a number.

EXP(in) This IEC operator yields the exponential function.

SIN(in) This IEC operator yields the sine value of a number.

Appendix Operators

276

Operators Detail

COS(in) This IEC operator yields the cosine value of a number.

TAN(in) This IEC operator yields the tangent value of a number.

ASIN(in) This IEC operator yields the arcsine value of a number.

ACOS(in) This IEC operator yields the arccosine value of a number.

The value is computed in radians.

ATAN(in) This IEC operator yields the arctangent value of a number. The value is

computed in radians.

EXPT(in,expt) This IEC operator raises a number to a higher power and returns the

power of the base raised to the exponent: power = in exponent.

LEN(in) Returns the number of characters of a string

LEFT(str,size) Returns a specific number of characters of a string, starting from left

RIGHT(str,size) Returns a specific number of characters of a string, starting from right

MID(str,size,pos) Returns a specific number of characters of a string, starting from a

specific position

CONCAT('str1','str2') CONCAT(STR1,STR2) means: Connect STR1 and STR2 to a single

string STR1STR2.

INSERT('str1','str2',pos) Inserts a string into another string at a specific position

DELETE('str1',len,pos) This function block deletes a file.

REPLACE('str1','str2',len,

pos)

Replaces a specific number of characters of a string by another string

FIND('str1','str2') Searches for the position of a partial string within a string.

SR FB： Realizes a bistable set-dominat latch

RS FB： Realizes a bistable reset-dominat latch

SEMA FB： Semaphore

R_TRIG FB： Detects a rising edge of a boolean signal

F_TRIG FB： Detects a falling edge of a boolean signal

CTU FB： Increments a given value

CTD FB： Decrements a given value

CTUD FB： Increments and decrements a given value

TP FB： Implements a pulse timer

TON FB： Implements a timer with a turn-on delay

TOF FB： Implements a timer with a turn-off delay

RTC FB： Calculates the elapsed time since a given start time

Operators Appendix

277

9.6.2. Priority

In the calculation of expressions, operators are processed according to operator

precedence.After the highest priority operation is processed, the next highest priority join

operation is performed.If there is an operation with the same priority, it is processed from left

to right.Below is a list in descending order of operator precedence.

Calculation Symbol Priority

In parentheses (Formula) High

Function call Function name Function name (Parameter)

Exponentiation operation EXPT

Negative number -

Not NOT

Multiplication *

Division /

Remainder MOD

Addition +

Subtraction -

Comparison <, >, <=, >=

Equal sign =

Inequality sign <>

AND AND

XOR XOR

OR OR Low

Appendix Pointer

278

9.7. Pointer

Pointers store the addresses of variables, programs, function blocks, methods and functions

while an application program is running. By using pointers, you can execute processes

efficiently.

Fig.9.31 Using pointers

For example, when writing to POU as shown in the upper left figure, memory is reserved

as shown in the upper right figure. In this example, the values of each variable are as follows.

Variable Detail Value

iData Value of iData 100

ADR(iData) Address of iData 1000

ptData Value of ptData 1000

ADR(ptData) Address of ptData 1002

ptData^ The value stored in the address of set in ptData 100

By using the pointer in the following cases, the process can be executed efficiently.

1) Data transfer

As shown above, pointers pass and receive addresses. For example, declare large data

such as "ARRAY [0..9999] OF LREAL" as input variables of FB, and data transfer. In

this case, CPU resources and memory are used inefficiently.

Therefore, in case of passing large data, pass only the address using the pointer. As a

result, only 4 bytes of the address are used for memory, without passing all the data of

the array. Accelerate processing and saving memory can be realized.

2) Passing by reference to FUN

Only one output data of FUN can be set. Therefore, the address of the storage

destination is passed to FUN by the pointer. And the data is written to that pointer variable.

As a result, multiple data can be output even in FUN.

3) Converting Data Types

By using a pointer, the data stored in the input address can be referred to with the

declared data type.As a result, you can refer to the data you passed the address with a

different data type.For example, if you pass STRING(10) := '0123456789' address' to

POINTER TO ARRAY [1..10] OF BYTE, the data is referenced like "30h,31h,..38h,39h"

Memory space

Confirm CPU utilizationCPU Appendix

279

9.8. Confirm CPU utilizationCPU

CPU utilization is the load on the CPU. If the CPU utilization is high, the process can not be

completely processed, possibly not conforming to the program. Therefore, it is necessary to

grasp the CPU load at execution of the created application.

There are two ways to check CPU utilization as shown below.

1) Check from the PLC shell

This tab of the generic device editor includes a text-based control monitor for querying

specific information from the S200. You can specify device-dependent commands for

this and receive the response from the controller in a result window.

When you select the PLC shell in the "Device" tab, the following window will be displayed.

Fig.9.32 PLC shell window

Click "..." at the bottom of the window to display the command list. Please select "plcload".

After entering the command, move the cursor to the command input field and press

"Enter" to send the command. The CPU utilization of each task is displayed in the result

window.

Fig.9.33 Confirm CPU utilization by PLC shell window

"PLC Core load" shows the total CPU utilization of each task.If "PLC Core load" exceeds

70%, you need to review the program.

Appendix Confirm CPU utilizationCPU

280

2) Check from SchedGetProcessorLoad (FUN)

One of the functions contained in CmpSchedule.lib is SchedGetProcessorLoad.

SchedGetProcessorLoad is a UDINT type function that returns the current CPU

utilization.

VAR_INPUT

pResult POINTER TO

RTS_IEC_RESULT

Returns the execution result of the function.

VAR_OUTPUT

SchedGetProcessorLoad UDINT Returns the current CPU usage.

Fig.9.34 Example of using SchedGetProcessorLoad

The value returned by SchedGetProcessorLoad will be the total CPU usage of each task.

Therefore, if the return value exceeds 70%, it is necessary to review the program.

If the CPU load is heavy, the connection with the development PC and the control buttons

may not work. In that case, you can prevent the application from starting by holding down

the control button during startup.

Since the application will not start, the CPU load will be reduced and you will be able to

log in. Please use the debug function to correct the cause of the CPU load.

Language selection Appendix

281

9.9. Language selection

The display language of SANMOTION C Software Tool 2.0.0 can be changed from "Tools"

⇒ "Options" ⇒ "International settings" on the menu bar.

Fig.9.35 Options window

Appendix Rules for identifier designation

282

9.10. Rules for identifier designation

9.10.1. Characters that can be used

The rules for characters that can be used for variable names and POU names are described

below.

・ Single-byte alphanumeric characters can be used, but there is no distinction between

uppercase and lowercase letters. A number cannot be used as the first character. As an

example, VAR1 and var1 refer to the same variable.

・ Identifiers cannot contain spaces or special characters. Only underscores (_) are allowed.

Consecutive underscores are not allowed.

・ Reserved words cannot be used. (Example: IF, AND, etc.)

Character type Usable characters Note

Alphabet a ~ z, A ~ Z Not case sensitive

Numbers 0 ~ 9 Do not use the first letter of the name

Special characters _ Prohibition of continuous use

9.10.2. Recommendations on how to assign identifiers

Use Hungarian Notation for naming conventions for variables in your applications and

libraries whenever possible. The base name should be a meaningful short description for

each variable. The first letter of each word in the base name must be uppercase, the rest

must be lowercase. You can create translation files for other languages as needed. Prefix

the base name with a lowercase prefix that corresponds to the data type of the variable.

Data type Prefix Comment

BOOL x, b xExecute，bExecute

BYTE by byData

WORD w wBuff

DWORD dw dwAddress

SINT si siCnt

USINT usi usiNum

INT i iParam

UINT ui uiLen

DINT di diPlus

UDINT udi udiCounter

REAL r rOvl

LREAL lr lrPos

STRING s sFileName

TIME tim timDelay

ENUM e eColor

POINTER p pSendData

ARRAY a abyTelegramData

STRUCT Library prefix

Example: CAN

CAN_SDOTelegram

A short description of the structure is recommended for the base name

POU Library prefix

Example: CAN

CAN_SendTelegram

It is recommended that the base name consist of a short description of

the POU with verbs and nouns

Functional specifications Technical data

283

10. Technical data

10.1. Functional specifications

Item
S200 series

SMC200-A SMC200-B

Memory

Program size 8MB

Retain variable size 500KB

RAM 1GB

Task

Minimum calculation cycle 2ms~

Minimum motion control cycle 2ms~

Minimum robot control cycle 8ms~

Maximum number of tasks 32

Programming
Programming language

IEC61131-3 standard 5 languages + CFC

LD ： Ladder Diagram

IL ： Instruction List

FBD ： Function Block Diagram

CFC ： Continuous Function Chart

ST ： Structured Text

SFC ： Sequential Function Chart

G-Code 〇 （DIN 66025） -

EtherCAT

Communication cycle 2ms, 4ms, 8ms, 16ms

Maximum number of connected

slaves
8 slaves

CoE 〇

FoE 〇

Hot connect 〇

Motion control

Maximum number of control axes 2ms/1~4 axes，8ms/5~8 axes

Control mode

Position control

Velocity control

Torque control

Position control（PTP）

Synchronous control Electronic cam・gear, CNC -

Control unit Any（pulse, mm, inch, degree）

Robot control

Gantry robot 〇 -

Scara robot 〇 -

Delta robot 〇 -

Maximum control number 1 -

Maximum number of constituent axes 4 axes -

Remote control 〇 〇

Mail notification 〇 〇

Corresponding

communication

EtherCAT master 〇 〇

EtherNet/IP 〇 -

OPC UA server 〇 〇

Web Visualization 〇 〇

Samba 〇 〇

Modbus-TCP 〇 〇

Modbus-RTU 〇 〇

MC Protocol 〇 〇

FINS 〇 〇

Technical data Factory default setting

284

10.2. Factory default setting

The factory settings are shown below. The factory reset function changes the settings as

follows.

Item Value

Host name SMC200

Ethernet port

DHCP：Inactive

IP address：192.168.21.101

Subnet mask：255.255.255.0

USB port
IP address：169.254.21.101

Subnet mask：255.255.0.0

Wireless LAN

DHCP：Inactive

IP address：192.168.100.101

Subnet mask：255.255.255.0

Mode：AP

SSID：SMC200-AP

Security：Personal

Password：123456789

Country code：US

Date and time 2001-01-01 00:00:00

Time zone UTC

Web app password
User：Administrator

Password：sanyodenki

Samba password
User：sanmotion

Password：sanmotion

FTP password
User：ftp

Password：ftp

Auto start
Active：plc, samba

Inactive：ntp, ftp

* For any question or inquiry regarding the above, contact our Sales Department.

https://www.sanyodenki.com

SANYO DENKI CO., LTD. TEL: +81 3 5927 1020
3-33-1, Minami-Otsuka, Toshima-ku, Tokyo, 170-8451, Japan

 Singapore Branch TEL: + 65 6223 1071

 988 Toa Payoh North, #04-08, Singapore 319002

 Jakarta Representative Office TEL: + 62 21 252 3202

 Summitmas II 4th Floor, Jl. Jend. Sudirman Kav.61-62, Jakarta 12190, Indonesia

SANYO DENKI EUROPE SA. TEL: +33 1 48 63 26 61
P.A. PARIS NORD II, 48 Allée des Erables-VILLEPINTE, BP.57286, F-95958 ROISSY CDG CEDEX, France

 Poland Branch TEL: +48 12 427 30 73

 ul. Wodociagowa 56 30-205 Kraków, Polska

SANYO DENKI AMERICA, INC. TEL: +1 310 783 5400
468 Amapola Avenue Torrance, CA 90501, U.S.A.

SANYO DENKI SHANGHAI CO., LTD. TEL: +86 21 6235 1107

Room 2106-2110, Bldg A, Far East International Plaza, No.319, Xianxia Road, Shanghai, 200051, China

SANYO DENKI (H.K.) CO., LIMITED TEL: +852 2312 6250
Room 2305, 23/F, South Tower, Concordia Plaza, 1 Science Museum Road, TST East, Kowloon, Hong Kong

SANYO DENKI TAIWAN CO., LTD. TEL: +886 2 2511 3938

N-711, 7F, Chia Hsin 2nd Bldg., No.96, Sec.2, Zhongshan N. Rd., Taipei 10449, Taiwan

SANYO DENKI GERMANY GmbH TEL: +49 6196 76113 0
Frankfurter Strasse 80-82, 65760 Eschborn, Germany

SANYO DENKI KOREA CO., LTD. TEL: +82 2 773 5623

15F, KDB Building, 372, Hangang-daero, Yongsan-gu, Seoul, 04323, Korea

 Busan Branch TEL: +82 51 796 5151

 8F, CJ Korea Express Building, 119, Daegyo-ro, Jung-gu, Busan, 48943, Korea

SANYO DENKI (Shenzhen) CO., LTD. TEL: +86 755 3337 3868
04B-07, 11/F, AVIC Center, No.1018 Huafu Road, Futian District, Shenzhen, 518031, Guangdong, China
 Chengdu Branch TEL: +86 28 8661 6901

 Room2105B, Block A, Times Plaza, 2 Zongfu Road, Jinjiang District, Chengdu, 610016 China

SANYO DENKI (THAILAND) CO., LTD. TEL: +66 2261 8670
388 Exchange Tower, 25th Floor, Unit 2501-1, Sukhumvit Road, Klongtoey, Klongtoey, Bangkok 10110 Thailand

SANYO DENKI INDIA PRIVATE LIMITED TEL: +91 44 420 384 72

#14 (Old No.6/3), Avenue Road, Nungambakkam, Chennai - 600034, Tamil Nadu, India

SANYO DENKI (Tianjin) CO., LTD. TEL: +86 22 2320 1186
Room AB 16th Floor TEDA Building, No. 256 Jie Fang Nan Road, Hexi District, Tianjin 300042 China

 Beijing Branch TEL: +86 10 5861 1508

 Room1807, Gaohe Lanfeng Buliding, No.98 East Third Ring South Road, Chaoyang District, Beijing 100122 China

The names of companies and/or their products specified in this manual are the trade names, and/or trademarks and/or registered trademarks of such respective companies.
*Specifications are subject to change without notice.

Translated version of the original instructions

Release
Revision A Aug. 2023

■ Precautions For Adoption

Failure to follow the precautions on the right may
cause moderate injury and property damage, or in
some circumstances, could lead to a serious
accident.
Always follow all listed precautions.

Cautions

⚫ Read the accompanying Instruction Manual carefully prior to using the product.

⚫ If applying to medical devices and other equipment affecting people’s lives please contact us beforehand
and take appropriate safety measures.

⚫ If applying to equipment that can have significant effects on society and the general public, please
contact us beforehand.

⚫ Do not use this product in an environment where vibration is present, such as in a moving vehicle or
shipping vessel.

⚫ Do not perform any retrofitting, re-engineering, or modification to this equipment.

⚫ The Products presented in this Instruction Manual are meant to be used for general industrial
applications. If using for special applications related to aviation and space, nuclear power, electric power,
submarine repeaters, etc., please contact us beforehand.

■ECO PRODUCTS
Sanyo Denki's ECO PRODUCTS are designed with the concept of lessening impact on the environment in the process from product
development to waste. The product units and packaging materials are designed for reduced environmental impact.
We have established our own assessment criteria on the environmental impacts applicable to all processes, ranging from design to
manufacture.
Those products that satisfy the criteria are accredited as ECO PRODUCTS.

	1. Preface
	1.1. Introduction
	1.2. Precautions related to these Instructions
	1.3. Documentation for further reading
	1.4. About CODESYS

	2. Safety notes
	2.1. Representation

	3. Installation of development software
	3.1. PC environment
	3.2. Run the installer
	3.3. When it does not work

	4. SANMOTION C Software Tool 2.0.0
	4.1. What is SANMOTION C Software Tool 2.0.0
	4.2. Template file
	4.3. Screen structure
	4.4. Project structure
	4.5. Device
	4.5.1. Communication Settings
	4.5.2. File
	4.5.3. PLC Settings
	4.5.4. Device Parameters
	4.5.5. Device I/O Mapping

	4.6. POU
	4.6.1. Program（PRG）
	4.6.2. Function block（FB）
	4.6.3. Function（FUN）

	4.7. Task
	4.8. Variable
	4.8.1. Data type
	4.8.1.1. Standard data type
	4.8.1.2. User-defined data type

	4.8.2. Declarative syntax
	4.8.3. Initial value setting
	4.8.4. Input Assistant function

	4.9. Programming language
	4.9.1. LD (Ladder Diagram)
	4.9.2. IL (Instruction List)
	4.9.3. FBD (Function Block Diagram)
	4.9.4. CFC (Continuous Function Chart)
	4.9.5. ST (Structured Text)
	4.9.6. SFC (Sequential Function Chart)
	4.9.7. Program language features

	4.10. Add device configuration file
	4.11. Library
	4.11.1. Add library
	4.11.2. Create library
	4.11.3. Install library
	4.11.4. Use library

	4.12. Application transfer
	4.12.1. Transfer from the integrated development environment via the network
	4.12.2. Source code downloads and upload
	4.12.2.1. Source download(Development PC → Controller)
	4.12.2.2. Source upload(Controller → Development PC)

	4.13. Debug function
	4.13.1. Monitoring
	4.13.2. Breakpoint
	4.13.3. Forcing and Writing Variables in online
	4.13.4. Flow Control
	4.13.5. Trace
	4.13.6. Simulation

	5. Settings in the Web application
	5.1. Web application

	6. Communication function
	6.1. EtherCAT
	6.1.1. Supported operation mode
	6.1.2. Object Dictionary
	6.1.3. Process Data Object(PDO)
	6.1.4. Service Data Object(SDO)
	6.1.5. EtherCAT device editor
	6.1.5.1. EtherCAT master setting
	6.1.5.2. EtherCAT slave setting

	6.1.6. Function block for SDO communication
	6.1.6.1. ETC_CO_SdoRead
	6.1.6.2. ETC_CO_SdoWrite

	6.1.7. PDO communication
	6.1.7.1. Assign variables
	6.1.7.2. Use variables

	6.2. EtherNet/IP
	6.2.1. Basic specifications
	6.2.2. Adapter setting procedure
	6.2.2.1. Adapter addition procedure
	6.2.2.2. Ethernet settings
	6.2.2.3. Adapter settings
	6.2.2.4. Module settings

	6.2.3. CIP object
	6.2.3.1. Identity Object (Class Code : 0x01)
	6.2.3.2. TCP/IP Interface Object (Class Code : 0xF5)
	6.2.3.3. Assembly Object (Class Code : 0x04)

	6.2.4. Scanner setting procedure
	6.2.4.1. Add scanner procedure
	6.2.4.2. Scanner settings
	6.2.4.3. Add remote adapter
	6.2.4.4. Remote Adapter Configuration

	6.2.5. Explicit message communication function block
	6.2.5.1. Apply_Attributes
	6.2.5.2. NOP
	6.2.5.3. Reset
	6.2.5.4. Start
	6.2.5.5. Stop
	6.2.5.6. Get_Attributes_All
	6.2.5.7. Get_Attribute_Single
	6.2.5.8. Set_Attributes_All
	6.2.5.9. Set_Attribute_Single
	6.2.5.10. Generic_Service

	6.3. OPC UA
	6.4. File sharing service
	6.4.1. Enable server from web application
	6.4.2. Directory structure of user area
	6.4.3. Connection method
	6.4.3.1. FTP
	6.4.3.2. Samba

	6.5. Wireless communication

	7. Control programming
	7.1. I/O control programming
	7.1.1. I/O assignment
	7.1.2. Creation of I/O control program

	7.2. Manual drive program
	7.2.1. Sample program summary
	7.2.2. Configuration
	7.2.2.1. Add slave
	7.2.2.2. Add axis
	7.2.2.3. Axis settings
	7.2.2.4. The state diagram

	7.2.3. Sample program

	7.3. Manual drive program by visualization
	7.3.1. Sample program summary
	7.3.2. Configuration
	7.3.3. Sample program
	7.3.4. Creation of visualization screen
	7.3.4.1. Add a visualization
	7.3.4.2. Creation of monitor section of visualization
	7.3.4.3. Creation of control section of visualization

	7.3.5. Web Visualization

	7.4. Single axis control program
	7.4.1. Sample program summary
	7.4.2. Configuration
	7.4.2.1. I/O setting
	7.4.2.2. Axis setting

	7.4.3. Sample program
	7.4.4. Operation check by trace

	7.5. PTP control program
	7.5.1. Sample program summary
	7.5.2. Configuration
	7.5.2.1. I / O setting
	7.5.2.2. Add PTP control axis
	7.5.2.3. Axis setting for PTP control

	7.5.3. Sample program
	7.5.4. Operation check by trace

	7.6. Infinite rotation axis control program
	7.6.1. Precautions for infinite rotation axis control
	7.6.2. Sample program summary
	7.6.3. Configuration
	7.6.3.1. I/O setting
	7.6.3.2. Axis setting
	7.6.3.3. Persistent variables setting

	7.6.4. Sample program
	7.6.5. Operation check by trace

	7.7. Synchronous Motion Control
	7.7.1. Electronic gear
	7.7.1.1. Sample program summary
	7.7.1.2. Sequence
	7.7.1.3. Configuration
	7.7.1.4. Sample program
	7.7.1.5. Operation check by trace

	7.7.2. Electronic cam
	7.7.2.1. Sample program summary
	7.7.2.2. Sequence
	7.7.2.3. Configuration
	7.7.2.4. Create a cam table
	7.7.2.5. Sample program
	7.7.2.6. Operation check by trace

	7.8. CNC control program
	7.8.1. Sample program summary
	7.8.2. CNC Editor
	7.8.2.1. Add and edit CNC program (Manually)
	7.8.2.2. Edit CNC program (Import from DXF file)

	7.8.3. Configuration
	7.8.3.1. I/O Mapping
	7.8.3.2. EtherCAT master setting
	7.8.3.3. Axis setting

	7.8.4. Sample program
	7.8.5. Operation check by visualization
	7.8.6. Operation check by trace

	7.9. File control program
	7.9.1. Access path
	7.9.2. String literal
	7.9.3. Sample program summary
	7.9.4. Sample program
	7.9.4.1. Create log output function
	7.9.4.2. Log output function usage example

	7.10. Serial control program
	7.10.1. Sample program summary
	7.10.2. Sample program

	7.11. Socket control program
	7.11.1. Socket type
	7.11.2. TCP communication
	7.11.3. UDP communication
	7.11.4. Sample program summary
	7.11.5. Sample program

	7.12. Camera control program
	7.12.1. Specification
	7.12.2. Function block
	7.12.2.1. ImageSave
	7.12.2.2. ImagesSaveGoingBackInTime
	7.12.2.3. ImagesSaveTriggerPrePost
	7.12.2.4. Error list

	7.12.3. Visualization Objects
	7.12.3.1. VisuStreamer
	7.12.3.2. VisuDispImage

	7.12.4. Sample program summary
	7.12.5. Sample program
	7.12.6. Operation check

	7.13. Mail sending program
	7.13.1. Email settings via web app
	7.13.2. Function block
	7.13.2.1. Send_Mail
	7.13.2.2. SM_Alarm_SendMail
	7.13.2.3. SML_Alarm_SendMail
	7.13.2.4. Error list

	7.13.3. Sample program summary
	7.13.4. Sample program
	7.13.5. Operation check

	7.14. 1-Wire communication program
	7.14.1. Specification
	7.14.2. Function block
	7.14.2.1. GetList
	7.14.2.2. GeneralCom
	7.14.2.3. Error list

	7.14.3. List information structure
	7.14.3.1. DeviceList (STRUCT)
	7.14.3.2. DeviceID (STRUCT)
	7.14.3.3. DeviceType (ENUM)
	7.14.3.4. CommonData (STRUCT)
	7.14.3.5. DeviceStatus (ENUM)
	7.14.3.6. UniqueData (UNION)
	7.14.3.7. U_General (STRUCT)
	7.14.3.8. U_9CT1_T (STRUCT)
	7.14.3.9. U_9CT1_P (STRUCT)
	7.14.3.10. TimeStamp (STRUCT)
	7.14.3.11. GeneralCommandData (STRUCT)

	7.14.4. Sample program summary
	7.14.5. Sample program
	7.14.6. Operation check

	7.15. MQTT communication program
	7.15.1. Specification
	7.15.2. Certificate registration
	7.15.3. Function block
	7.15.3.1. CONNECT
	7.15.3.2. PUBLISH
	7.15.3.3. SUBSCRIBE
	7.15.3.4. UNSUBSCRIBE
	7.15.3.5. SERVER_REF
	7.15.3.6. Error list

	7.15.4. Sample program summary
	7.15.5. Sample program
	7.15.6. Operation chek

	8. Limitations
	8.1. For RTC Setting
	8.2. Regarding homing
	8.2.1. RS2 series (Model Number：RS2*****K**)
	8.2.2. Homing of SANMOTION EtherCAT slave
	8.2.3. Cancellation of MC_Home_SML

	8.3. Regarding visualization
	8.3.1. Antialiasing settings
	8.3.2. Regarding ActiveX elements

	8.4. Regarding retain variables
	8.5. Invert direction parameter of the SML axis
	8.6. Ethernet communication after startup

	9. Appendix
	9.1. Time zone list
	9.2. Library for motion Control
	9.2.1. Function block for single axis control
	9.2.1.1. MC_Power
	9.2.1.2. MC_Reset
	9.2.1.3. MC_Home
	9.2.1.4. MC_Stop
	9.2.1.5. MC_Halt
	9.2.1.6. MC_MoveAbsolute
	9.2.1.7. MC_MoveRelative
	9.2.1.8. MC_MoveAdditive
	9.2.1.9. MC_MoveVelocity
	9.2.1.10. MC_Jog
	9.2.1.11. SanHome

	9.2.2. PTP control function block
	9.2.2.1. MC_Power_SML
	9.2.2.2. MC_Reset_SML
	9.2.2.3. MC_Home_SML
	9.2.2.4. MC_Stop_SML
	9.2.2.5. MC_Halt_SML
	9.2.2.6. MC_MoveAbsolute_SML
	9.2.2.7. MC_MoveRelative_SML
	9.2.2.8. MC_MoveVelocity_SML
	9.2.2.9. SML_SetOpmode

	9.2.3. Function block for multi-axis control
	9.2.3.1. MC_GearIn
	9.2.3.2. MC_GearInPos
	9.2.3.3. MC_GearOut
	9.2.3.4. MC_CamTableSelect
	9.2.3.5. MC_CamIn
	9.2.3.6. MC_CamOut

	9.2.4. Function block for CNC control
	9.2.4.1. SMC_Interpolator
	9.2.4.2. SMC_TRAFO_XXXXX
	9.2.4.3. SMC_TRAFOF_XXXXX
	9.2.4.4. SMC_ControlAxisByPos

	9.3. G code list
	9.4. Instruction
	9.4.1. IF
	9.4.2. CASE
	9.4.3. FOR
	9.4.4. WHILE
	9.4.5. REPEAT
	9.4.6. EXIT
	9.4.7. RETURN

	9.5. Cast
	9.6. Operators
	9.6.1. List
	9.6.2. Priority

	9.7. Pointer
	9.8. Confirm CPU utilizationCPU
	9.9. Language selection
	9.10. Rules for identifier designation
	9.10.1. Characters that can be used
	9.10.2. Recommendations on how to assign identifiers

	10. Technical data
	10.1. Functional specifications
	10.2. Factory default setting

