

User Guide
Instructions for EZ4AXIS17XR-ST

EZQuadHRStepper

Manual revision 1.19
Mar, 2021

Page 2 of 107

Important Notices

Life and Safety Policy

Without written authorization from the AllMotion company President, AllMotion, Inc. products are
not authorized for use as critical components in life support systems, for surgical implant into the
body, or other applications intended to support or sustain life or any other applications whereby a
failure of the AllMotion, Inc. product could create a situation where personal injury, death or dam-
age to persons, systems, data or business may occur.

AllMotion, Inc.
30097 Ahern Avenue
Union City, CA 94587
USA

Tel: 408.460.1345
Fax: 408.358.4781

Technical Support: 408.460.1345
Sales: 510.471.4000

Website: www.allmotion.com

Copyright © 2017, AllMotion, Inc. All rights reserved.

The following are trademarks of AllMotion, Inc.: AllMotion®, EZStepper ®, EZServo®,
EZBLDC™, EasyBLDC™. Other names, brands, and trademarks are the property of others.

AllMotion, Inc. assumes no responsibility or liability for information contained in this document.
AllMotion, Inc. reserves the right to make corrections, modifications, enhancements, improve-
ments, and other changes to its products, specifications, and services at any time and to discon-
tinue any product or service without notice. The information contained herein is believed to be
accurate and reliable at the time of printing.

 Table of Contents

 Page 3 of 107

Table of Contents – note: page numbers approximate

Important Notices .. 2

Life and Safety Policy ... 2

1. Quick guide .. 9

Quick setup .. 9

2. Introduction ... 10

About this manual ... 10

Before you start .. 11

Obtain communications software ... 11

Obtain needed documentation ... 11

Gather needed equipment ... 11

About the EZStepper® command language .. 12

Features .. 12

Syntax ... 12

3. Basic programming operations .. 13

First things .. 13

Make sure system is connected and operating ... 13

Basic move commands to Axis 1 ... 13

1. Move Axis 1 motor to relative position in positive direction (the P command). 13

2. Move Axis 1 motor to relative position in negative direction (the D command). 14

3. Move Axis 1 motor to absolute position (the A command) .. 14

4. Home the Axis 1 motor (the Z command) .. 15

Send commands to other axes .. 15

Send commands to multiple axes (multi-axis commands) .. 16

Overview ... 16

Send a move command to all four axes ... 17

Send a move command to just two axes .. 17

Set velocity, acceleration, and current ... 18

Store and recall programs ... 19

Overview ... 19

1. Store a command string (the s command) ... 19

2. Recall (run) a stored command string (the e command) ... 19

3. Erase a specific EEPROM location.. 19

4. Erase a stored command string. .. 19

5. Automatically run a stored program on power-up ... 19

Reading a stored program from EEPROM ... 20

When a string length exceeds memory location capacity .. 21

Create loops ... 22

Table of Contents

Page 4 of 107

1. Create a loop that repeats a specific number of times.. 22

2. Create an endless loop ... 22

3. Exit a loop upon input level change method 1. ... 23

4. Exit a loop upon input level change method 2. ... 23

5. Halt a loop pending level change. .. 23

6. Use limits to move smoothly until sensor cut ... 23

Terminate a program during execution .. 24

Controlling Power Drivers (solenoid drivers) .. 25

Hookup .. 25

Programming ... 25

4. Advanced programming operations ... 27

Essential setup information ... 27

Motor direction of rotation considered positive.. 27

Changing communication baud rate ... 27

Readback of parameters from the drive: .. 28

Reading firmware version .. 28

Reading motor positions .. 28

Reading currently running or most recent command... 28

Default axis selection ... 28

Designating negative relative move in otherwise positive-move multi-axis command strings 29

Designating positive relative move in otherwise negative-move multi-axis command
strings ... 29

Pre-select axis and send commands subsequently ... 29

Motor sequencing in multi-axis commands .. 29

Making on-the-fly parameter changes (Immediate Commands) ... 30

Overview ... 30

Examples .. 30

Immediate Command list ... 30

Analog and Digital Inputs .. 31

Read back digital IO input values on the 10 Pin I/O Connector (/1?41 /1?42 /1?43
/1?44 command).. 31

Read back analog IO input values (the ?aa1 command)... 31

Programmable Threshold on Analog Readback (the at command) 31

Input-Dependent Basic Operations.. 33

Halt and wait for IO or Limits (the H command) .. 33

Skip and Branch on IO or limits (the S and e commands) ... 34

Overview .. 34

Example ... 34

Advanced looping techniques ... 36

Create a nested loop ... 36

 Table of Contents

 Page 5 of 107

Set up standalone operation .. 36

Readjusting velocity, acceleration, and current .. 37

Single-Axis programming supplemental examples... 38

Example #1 (loop: moves with waits) ... 38

Example #2 (loop: set current, wait for Switch 2 closure, go home) 38

Example #3 (loop: monitor four switches and execute four different programs
depending on which switch input is pushed) ... 39

Setup.. 39

Execution ... 39

Example #4 (loop: move 1000 steps forward on rising edge of Axis 1 Input 1) 40

Example #5 (loop: use threshold setting to regulate pressure) .. 40

Multiple-axis/multiple drive supplemental examples ... 40

Example #5: coordinated motion with all cards on a bus, and all motors on each card,
performing same motion .. 40

Example #6: coordinated motion between two separate drive cards. 41

Example #7: synchronized motion among different drives .. 41

Example #8: select drives in bank, then issue command to bank 41

5. Limits (n2) ... 42

Overview ... 42

Hookup .. 42

Basic limits setup ... 43

Commands for limits .. 44

6. Emergency stop / kill move ... 45

Overview ... 45

7. Digital IO (switch-controlled) applications .. 46

Hookups .. 46

Commands .. 47

Examples .. Error! Bookmark not defined.

8. Analog control applications ... 49

Analog inputs .. 49

Noise considerations ... 49

9. Homing ... 50

Overview .. 50

Homing to opto/switch (default N1 mode) .. 50

Hookups .. 50

Noise considerations ... 51

Homing behavior ... 51

Basic homing setup ... 51

Commands for homing to opto/switch .. 52

Homing to encoder index (N2 mode) ... 54

Table of Contents

Page 6 of 107

Overview ... 54

Hookup .. 54

Commands .. 54

Example .. 54

10. Using encoders ... 55

Overview .. 55

Encoder hookup.. 56

Encoder following mode (n64) ... 57

Overview ... 57

Setting up encoder following mode .. 57

Commands for encoder following mode ... 57

Encoder position correction mode (n8) .. 59

Overview ... 59

Functional description .. 59

Commands for encoder position correction mode... 60

Setting Up encoder position correction mode ... 60

1. Make sure motor turns in the positive in the direction you intend.................................. 60

2. Calculate encoder ratio and set (aE) ... 60

3. Automatically compute encoder ratio and set (aE) ... 61

4. Optional: set correction deadband (aC) ... 62

5. Optional: Set the Overload Timeout Value (au).. 62

6. Enable the position correction mode (n8) .. 63

To terminate position correction mode ... 63

Troubleshooting ... 63

Auto recovery in position correction mode (n512, n1024, n1536) ... 64

Overview ... 64

Commands .. 64

Example (exercise) .. 65

Encoder Overload Report mode (n16) –not implemented yet... 66

Overload Report mode commands... 66

Setting arbitrary measurement units via the aE command ... 66

Appendix 1. Addressing methods reference .. 67

Addressing individual drive cards .. 67

Addressing drives 1-9 .. 67

Addressing drives 10-16 .. 67

Addressing one axis (motor) within a single drive card ... 67

Select axis and issue command at the same time .. 67

Pre-select axis and send commands subsequently .. 68

Addressing multiple axes on a drive card simultaneously .. 68

 Table of Contents

 Page 7 of 107

Addressing banks of drive cards ... 69

Addressing banks of two drives.. 69

Addressing banks of four drives ... 69

Addressing all drive cards at once.. 69

Appendix 2. Command set reference .. 70

Introduction ... 70

Command list.. 70

AXIS SELECTION ... 70

POSITIONING ... 70

INTERPOLATION COMMANDS (Axes 1, 2 and separately Axes3,4) 71

HOMING ... 72

SET VELOCITY ... 73

SET ACCELERATION ... 73

LOOPING AND BRANCHING .. 73

PROGRAM STORAGE AND RECALL ... 77

PROGRAM EXECUTION .. 77

SET MAX MOVE / HOLD CURRENT ... 77

N MODE COMMANDS .. 78

n MODE COMMANDS ... 79

an MODE COMMANDS ... 80

POSITION CORRECTION COMMANDS – Not Impemented yet 80

POWER DRIVER CONTROL .. 81

POTENTIOMETER POSITION COMMANDS... 81

MISCELLANEOUS COMMANDS... 81

ANALOG INPUT (ADC) COMMANDS.. 82

IMMEDIATE QUERIES / COMMANDS .. 83

RESPONSE PACKET ... 87

Appendix 3. Step loss detection using opto ... 89

Appendix 4. Device response packet ... 90

Introduction ... 90

Response packet structure ... 90

Example initialization error response ... 91

Example invalid command response ... 91

Example operand out of range response ... 91

Example overload error response ... 91

Example response to command “/1?4” .. 92

Appendix 5. Microstepping primer ... 93

Appendix 6. Stepper motor electrical specification ... 94

Maximizing speed at which current can be changed .. 94

Table of Contents

Page 8 of 107

EZ4AXIS operation ... 95

Maximizing power to motors on EZ4AXIS17XR ... 95

Summary .. 95

Appendix 7. Heat dissipation (EZStepper® products with motor drives) 96

Overview ... 96

Running at high current/duty cycle ... 96

Appendix 8. OEM Protocol with checksum .. 97

Introduction ... 97

OEM Protocol example 1 .. 97

OEM Protocol example 2 .. 98

Appendix 9. Linear and circular interpolation ... 99

Drawing circles and lines – NOT IMPLEMENTED YET IN EZ4AXIS17XR – ONLY
IMPLEMENTED IN EZ4AXIS .. 99

Overview ... 99

Circular interpolation .. 100

Linear interpolation .. 101

Overview .. 101

Exiting linear interpolation mode ... 101

Circle and star example ... 102

Introduction .. 102

The star pattern .. 103

Command string for star pattern (location 4) ... 104

Command string for homing after drawing star pattern (location 7) 104

Circle patterns .. 105

Command string for smaller circle (location 5) ... 105

Command string for larger circle (location 6) ... 106

Command string for startup (location 0) .. 107

 Quick guide

 Page 9 of 107

1. Quick guide

This EZ4AXIS17XR and EZQuadHRStepper can be commanded by
sending simple text messages to the drive. It is not necessary to compile
software etc. For example sending the text P1000 makes the drive go in
the Positive direction 1000 steps. The drive will also respond back with a
text message. The text messages can also be stored on the drive and
executed on power-up. Text messages can be sent via RS232, RS485,
USB or CANBUS.

Quick setup

Hook up the EZ4AXIS17XR / EZQuadHRStepper using the Quick Start
guide and the wiring diagram from links at the bottom of web page:
http://www.allmotion.com/Stepper_Pages/EZ4AXIS17XRdescription.html

Per quick start guide find the com port that appears and disappears when
the USB is plugged in and out. This is the com port for the drive. If a
new com port does not appear, then install the windows/mac drivers
manually.

Do not unplug the motors when the power is on, because the inductance
of the motor will generate a high voltage when the current in the motor is
interrupted, which will damage the drive.

1. Using the EZCommander windows App, issue the command /1&.
The drive should respond with its firmware version.

2. With the power off plug in Motor #1. Turn on power, issue the
command /1P1000R. The drive should move forward 1000
microsteps.

3. Turn off power and plug in up to four motors.

4. Issue the command

/1aM2P1000R. Motor 2 should move.

/1aM3P1000R Motor 3 should move.

5. Issue the command

/1P1000,1000,1000,1000R

All 4 motors should spin

6. Issue the command

/1P1000,1000,,1000R

Motors 1, 2, and 4 will spin. (note comma positions)

/1V100,200,300,400R sets motor speeds

7. /1?aA reads back the position of all four motors.

Please see the additional examples “Single-Axis programming
supplemental examples” starting on page 38, “Multiple-axis/multiple
drive supplemental examples” on page 40, and the “Command list” on
page 70.

Introduction

Page 10 of 107

2. Introduction

About this manual

This document describes how to program and operate the EZStepper®
EZ4AXIS17XR and EZQuadHRStepper (Stepper Controller + Driver).

These sections are included:

• Basic Programming Operations. (Starting page 13) This describes
how to set up basic motor moves, first on one axis and then multiple
axes.

• Advanced Programming Operations. (Starting page 27) This
describes how to set up more complex moves, including conditional
moves based on signals at the inputs. Many examples are provided.
This section also contains essential information about how the
product operates, and describes operations not covered in the Basic
Operations section.

• Sections focused on specific Programming applications. (Starting
page 42) Limits, Digital IO (switch-controlled) Applications, Analog
Control Applications, Homing, and Using Encoders.

• Appendices. (Starting page 67) The appendices contain reference
information to supplement the instructions, such as an extensive
command set for the product. There is also additional technical
information that you may find helpful in applying the product.

 Introduction

 Page 11 of 107

Before you start

Obtain communications software

• If you are using a Windows-based system to communicate with your
AllMotion product, we recommend that you download and install the
EZ Commander™ application from the AllMotion website Support
page.

Alternatively, a terminal program such as HyperTerminal may be
used.

• If you are using a Macintosh system to communicate with your
product, any text-based terminal program will be adequate.

NOTE: The EZStepper® communicates over the RS485 EZ bus at
9600 baud, 1 stop bit, no parity, no flow control. If necessary, this
can be changed with the b command, after getting hooked up. This is
covered in “Essential setup information” on page 27.

Obtain needed documentation

Obtain the following for the EZ4AXIS via links at the bottom of this web
page: http://www.allmotion.com/Stepper_Pages/EZ4AXISdescription.htm
http://www.allmotion.com/Stepper_Pages/EZ4AXIS17XRdescription.html

• EZ Start document (EZ Starter Kit Instructions) for your product.
This will get you started with setting up communications and
confirming operation.

• Wiring diagram. This will serve as a guide to hookups and various
ways of applying your AllMotion product.

• Data sheet.

Gather needed equipment

Ensure that you have compatible stepper motor(s), a PC or other device
capable of running a terminal program, and a power supply. Typically
use a 12V or 24V capable of 3A. If starting out use a current limited lab
supply set to 0.5A current limit.

• Do not connect or disconnect motor cable while power is on. This
causes a high voltage spark due to the inductance of the motor, and
can damage the chips on the drive. This includes loose connections.

Introduction

Page 12 of 107

About the EZStepper® command language

Features

This EZ4AXIS can be commanded by sending simple text messages to
the drive. It is not necessary to compile software etc. For example
sending the text P1000 makes the drive go in the Positive direction 1000
steps. The drive will also respond back with a text message. The text
messages can also be stored on the drive and executed on power-up. The
drive can also test the status of inputs and execute commands conditional
on the status of an input with no computer attached.

Syntax

The text message commands consist of single alpha characters usually
followed by a numeric value. The alpha character represents “what to
do” and the numeric value represents “how much to do it.” A complete
command string contains a start character, a device address, a command,
and a Run command—which tells a particular motor (or axis) to accept
the command string.

Example: /1P1000R

Text message command string breakdown:

/ Start character. Tells the EZStepper® that a command is coming
in.

1 Device address. This is the number set on the rotary mechanical
Address switch on the Drive. .

P1000 Command. Move 1000 steps in the positive direction. From
wherever the motor currently is. By default on power up this
command goes to motor#1.

R Run the command. This is the end of the command string.

Multiple commands can be entered in a single string and they are
executed one at a time starting with the command on the left.

Example: /1V1000P1000V2000P1000R

where the first P1000 will happen at a velocity of 1000 and the second

P1000 will happen at a velocity of 2000.

 Basic programming operations

 Page 13 of 107

3. Basic programming operations

This section describes how to enter basic commands to the EZ4AXIS. A
complete listing of commands is contained in Table 1 on page 70.

First things

Make sure system is connected and operating

Follow the instructions in the EZ Start document for EZ4AXIS17XR, to
make sure you have it hooked up properly and it is communicating with
your host PC. The EZ4AXIS17XR board should be set to address 1 as
described in the EZ Start document. (Found in links on product page)

Basic move commands to Axis 1

These are the basic move commands:

P Move motor to relative position in positive direction
(microsteps).

D Move motor to relative position in negative direction
(microsteps).

A Move motor to absolute position in microsteps.

Z Move motor to home position.

1. Move Axis 1 motor to relative position in positive di-
rection (the P command).

NOTE: Relative position refers to movement measured from the
current position of the motor.

Send this command string: /1aM1P1000R

Result: The motor on Axis 1 rotates 1000 microsteps in the positive
direction from its current position. It then stops and holds its new po-
sition until another command is received.

Command string breakdown:

/1 Start character; select address 1 on the EZ bus.

aM1 Select Axis 1 on the board.

P1000 Move 1000 microsteps in positive direction from current
position.

R Run the command.

Basic programming operations

Page 14 of 107

2. Move Axis 1 motor to relative position in negative di-
rection (the D command).

Relative position refers to movement measured from the current po-
sition of the motor.

Command string breakdown:

/1 Start character; select address 1 on the EZ bus.

aM1 Select Axis 1 on the board.

D1000 Move 1000 microsteps in negative direction from cur-
rent position.

R Run the command.

3. Move Axis 1 motor to absolute position (the A com-
mand)

On power up the Absolute Position is set to zero. The absolute posi-
tion will also be set to zero when using the Home (Z) command at
the point when the Home is triggered. The absolute position is a
measure of the total distance moved from the point at which the ab-
solute position is set to zero.

Send this command string: /1aM1A1000R

Result: The motor on Axis 1 rotates to absolute position 1000
microsteps. It then stops and holds its new position until another
command is received.

Command string breakdown:

/1 Start character; select address 1 on the EZ bus.

aM1 Select Axis 1 on the board.

A1000 Move (rotate) to absolute position 1000.

R Run the command.

Note that issuing this command again will not make the motor move
because it is already at absolute position 1000. The current absolute
position can be read back by issuing /1?0.

 Basic programming operations

 Page 15 of 107

4. Home the Axis 1 motor (the Z command)

This command causes the motor to turn in the negative direction un-
til the home sensor is tripped or, once the sensor is tripped, the posi-
tion is set to zero. This allows the drive to initialize a mechanism to a
known position. Details are located in “Homing to opto/switch (de-
fault N1 mode)” beginning on page 50.

Example: Set up a normally closed switch, or opto between the home
input and the ground input on the ten-pin Axis 1 Home connector.

Send this command string and push the switch while it's running:
/1aM1Z10000R.

Result: The motor on Axis 1 Drive 1 rotates to the home position
until the switch changes state, and then the position for that axis is
set to zero.

Command string breakdown:

/1 Start character; select address 1 on the EZ bus.

aM1 Select Axis 1 on the board.

Z Move to home position.

10000 Maximum number of microsteps or encoder counts that
the motor is allowed to move toward home in search of
the home flag before the program declares an error.

R Run the command string.

NOTE: From this point onward, command string breakdowns will
not always be shown.

Send commands to other axes

To send any command to Axes 2, 3, or 4, simply change the aM1 in the
command string to one of the following:

aM2 Axis 2

aM3 Axis 3

aM4 Axis 4

Example:

/1aM2A1000R goes to Axis 2.

/1aM3A1000R goes to Axis 3.

Basic programming operations

Page 16 of 107

Send commands to multiple axes (multi-axis commands)

Overview

Some commands can be issued to one, some, or all four axes on the drive
simultaneously. Thus they are “multi-axis” commands. These are the
multi-axis commands:

L Set acceleration (sets same value all axes).

V Set velocity (sets same value all axes).

h Set hold current (sets same value all axes).

m Set move current (sets same value all axes).

P Move forward to relative position.

D Move backward to relative position.

A Move to absolute position.

All other commands require individually selecting the axis and issuing
the command. /1aM2P1000R etc.

When issuing a multi-axis command, the axis positions are delimited by
commas, beginning with Axis 1 on the left and ending with Axis 4 on the
right, as shown in the following examples.

 Basic programming operations

 Page 17 of 107

Send a move command to all four axes

Send this command string: /1P1000,1000,1000,1000R

Result: All four axes move 1000 microsteps in the positive direction.

You may send different values to different axes. For example:
/1P1000,300,1000,300R moves Axis 1 and 3 1000 microsteps and Axes
2 and 4 300 microsteps.

NOTE:

• Negative numbers would designate negative movement for the
otherwise positive-direction P command. If the D command
(negative move) were used, negative numbers would designate
positive movement. Example: /1P1000,-500,1000,-500R would
move Axes 1 and 3 1000 microsteps positive, and Axes 2 and 4 500
microsteps negative.

• When several multi-axis commands are placed in a string one after
the other, by default each motor will wait until all have completed
their motion before responding to the next command. I.e., they all go
to the “4-axis coordinate” given by each command prior to starting
the next command. Example of such a string:
/1A1000,200,300,10A200,500,200,900A200,300,500,78R.

See “Motor sequencing in multi-axis commands” on page 29.

• When a multi axis command is issued, it will reset the default single
axis command destination to Motor 1. (Inherent aM1 command)

• The target position can be changed using an “immediate” command
even while a move is being executed. (See “Making on-the-fly
parameter changes” on page 30.)

Send a move command to just two axes

Omit values for the non-addressed axes, but retain commas.

Send this command string: /1P1000,,1000,R

Result: Axes 1 and 3 move 1000 microsteps in the positive direction.
Axes 2 and 4 do not move. The commas marking the positions of Axes 2
and 4 are retained. Note that motors can be started at different times by
issuing commands as “immediate commands” while some motors are
moving. An “immediate command” is a single command issued while
another command is already executing. And will interrupt/add to the
currently executing command.

Basic programming operations

Page 18 of 107

Set velocity, acceleration, and current

The following commands control velocity, acceleration, and motor
current.

V Maximum velocity (speed): This sets the maximum velocity for
a move, which is reached after an acceleration period set by the
L command.

 Single Axis Example: /1aM1V1000R

 Multi Axis Example: /1V100,200,200,300R

 Or /1V100,,100,R to affect motors 1 and 3only

L Acceleration (acceleration factor): This sets the acceleration fac-
tor, which controls the amount of time required for the motor to
reach the maximum velocity (acceleration ramps). The
EZAXIS1 equation for acceleration is: Acceleration (in
microsteps / sec^2) = (L value) x (100,000,000/65536) For ex-
ample, if V=10000 and L=1, it will require 6.5536 seconds to
reach final velocity.
V= (Accn * Time) = (LValue)*(100,000,000/65536) * (Time)

 Single Axis Example: /1aM1L100R

 Multi Axis Example: /1L100,200,200,300R

 Or /1L100,,100,R to affect motors 1 and 3only

m Maximum move current: This sets the current level when the
motor is moving. More current provides more force and more
acceleration. Move current is given as a percentage of the maxi-
mum output drive current for the device (m100 = 0.5A for
EZ4AXIS17XR).

 Single Axis Example: /1aM4m30R

 Multi Axis Example: /1m10,20,50,30R

h Hold current: This sets the current when the motor is stationary.
The hold current prevents the motor from slipping against any
disturbance when not moving. Hold current is expressed as a
percentage of the maximum output drive current for the device
(h50 = 0.25A for EZ4AXIS). (50% is max allowed for hold cur-
rent)

 Single Axis Example: /1aM3h20R

 Multi Axis Example: /1h10,20,20,30R

 Basic programming operations

 Page 19 of 107

Store and recall programs

Overview

Command strings for later recall can be stored in the EEPROM on the
EZ4AXIS board.

1. Store a command string (the s command)

Store specific command string in designated EEPROM location. the
s command is followed by a number ranging from 0 to 63, indicating
an EEPROM location.

Example: /1s2P1000R

Result: The command P10000 is stored in EEPROM location 2 as
specified by the s2 command, and may be referred to as program 2.

2. Recall (run) a stored command string (the e command)

Run the command string stored in designated EEPROM location.

Example: /1e2R

Result: Executes (recalls) the command string stored in EEPROM
location 2.

3. Erase a specific EEPROM location

To erase a location, use the store command without any commands
indicated.

Example: /1s2R

Result: EEPROM location 2 is erased.

4. Erase a stored command string.

To erase a location, use the store command without any commands
indicated.

Example: /1s2R

Result: EEPROM location 2 is erased.

5. Automatically run a stored program on power-up

The command string in location 0 is always executed on power-up. If
we used 0 instead of 2 in the above example, this program would ex-
ecute automatically on power-up.

Example: /1s0A0P10000R

Result: The command A0P10000 is stored in EEPROM location 0.
Cycling the power will cause A0P10000 to be executed and the drive
to go forward 10000 steps on power-up.

Basic programming operations

Page 20 of 107

NOTES

▪ Programs cannot be running while programming the EEPROM.
Terminate any strings or loops with /1T prior to issuing a store
command.

▪ Program storage takes approximately one second to execute. The
drive will not respond during this time.

▪ Each of the 0-63 memory location can accept up to 25 full com-
mands per string, or 256 characters, whichever is less.

Example: /1s0A0A100gP1000m1000G5e1R

▪ Excessive characters will overwrite the 256th character repeated-
ly until the R (run) command, which is not overwritten because it
is the final character in the string.

▪ Programs can call each other.

Example:

/1s0A0e1

/1s1A1000e0R

Will cause the motor to go between A0 and A1000 on power-up.

▪ Single axis commands will go to whichever motor was selected
with the last /1aM2R etc motor selection command. This com-
mand can be stored in the EEPROM to ensure the correct motor
moves. /1s0A0aM2P1000R will move motor #2 1000 steps on
power-up.

NOTE: There is no relationship between the “Send String” num-
bers in the EZCommander Windows application and the storage
locations in EEPROM specified by the s command.

Reading a stored program from EEPROM

To read the contents of a memory location, first execute the command in
that memory location, then read the currently running or most recent
command.

Example:

1. Issue /1s13aM1A1000A0R to store command in location 13.

2. Issue /1e13R to execute the command in location 13.

3. Issue /1$ to read the currently-running or most recent command
string.

Example result: aM1A1000A0 No Error.

NOTES

▪ Do not include the execute query commands in the same com-
mand string as an action command. Eg /1A1000$R won’t work.

▪ The $ command may not be able to read very long command
strings. On older firmware, attempting to read very long com-
mand strings may kill board operation. If this happens, power
cycle the board.

 Basic programming operations

 Page 21 of 107

When a string length exceeds memory location capacity

Each EEPROM location has a capacity of 256 characters, including the
run (R) command. If the command string exceeds this number, it can be
broken into two smaller strings that reside in two different memory
locations. At the end of the string that runs first, a command to execute
the contents of the second memory location is inserted just before the R
command. If, for example, the second string is in location 7, e7 (execute
the contents of EEPROM location 7) would be inserted.

NOTE: When a command string exceeds 256 characters, the last char-
acter is repeatedly overwritten by the next character in the string until,
finally, the R (run) character is written. Thus, such a string will always
attempt to execute.

Basic programming operations

Page 22 of 107

Create loops

One or more commands can be looped, by placing a lower case g at the
beginning of the and an upper case G at the end of the command(s), a
number after the upper case G sets the number of times the loop is to be
repeated.

The following examples describe how to make two basic types of loops.

NOTE: The example also introduces the M, or wait, command.

1. Create a loop that repeats a specific number of times

Example: /1aM2gP1000M500D1000M500G10R

Command breakdown:

/ Start character. Tells the EZSteppers® that a command
is coming in.

1 Device address, (set on address switch on device).

aM2 Axis address, in this case Axis #2.

g Start a loop.

P1000 Move 1000 microsteps in the positive direction.

M500 Wait for 500 milliseconds.

D1000 Move 1000 microsteps in the negative direction.

M500 Wait for 500 milliseconds.

G10 Repeat 10 times beginning at the location of the g
command.

R Run the command.

Result: The command string following the g command executes and
ends when the G command has repeated 10 times.

Issue /1T to terminate the loop at any time.

2. Create an endless loop

Change G10 in the preceding example to G0 (Gzero).

Result: The loop starts and continues forever unless a T command is
issued. To terminate this loop, issue /1T. (Do not use /1T2, /1T3 etc.
to terminate a G loop since the behavior is undefined and may
change in the future.)

Note that if a loop is running a /1T must be issued before making any
changes or sending a new command. The only exception is a single
immediate command which will be inserted into the loop, one time,
at the time of sending.

 Basic programming operations

 Page 23 of 107

3. Exit a loop upon input level change method 1.

Example:

/1s1R—store nothing in program 1 in the EEPROM.

1aM1gP1000M1000S02e1GR—loop of motion and wait.

Result: With switch 2 input high the loop executes normally. When
Switch 2 is brought low the program executes the e1 command and
jumps out of the loop.

4. Exit a loop upon input level change method 2.

Example:

1aM1gP1000M1000S02G0R—loop of motion and wait.

Result: With switch 2 input high the loop executes normally. When
Switch 2 is brought low the program skips the G command and
stops.

This mode also works for the following strings:

1aM1gP1000M1000S02G0A10000R

where A10000 executed upon switch closure or even

1aM1ggP1000M1000S02G5A0GR

where the inner loop is exited upon switch closure.

5. Halt a loop pending level change.

Example: Send the following command strings.

1aM1gH02A1000A0GR

Where loop only runs when Switch 2 is low.

1aM1gH02H12A1000A0GR

Where loop runs once for every low/high transition of Switch 2.

NOTE: More complex loops are described in Section 4, “Advanced
programming operations.”

6. Use limits to move smoothly until sensor cut

Send these command strings:

1gaM1n2P0n0P1500gaM2P1000aM1P1000G8aM1P25000GR

Say motor 1 is a conveyor belt that moves a microtiter plate until its
under a syringe moved by motor 2. Use a sensor wired to the high
limit of motor 1, the P0 moves until the microtiterplate is under the
syringe then stops, no limits are turned off, the plate moves forward
1500 until plate e well is under syringe, plate is filled with
aM2P1000 eight times. Plate is kicked out with P25000 and cycle
repeats

Basic programming operations

Page 24 of 107

Terminate a program during execution

To immediately terminate any executing command or string on the
board, issue /1T.

Note that the string is still in the command buffer, and may be executed
from the beginning by issuing /1R.

If a multi-axis command is in progress, one axis at a time may be
terminated by using /1T1, /1T2, /1T3, or /1T4.

NOTE: The T1, T2, T3, and T4 commands should only be used to ter-
minate a single multi-axis command. The behavior in a loop or multi-
command string is undefined and may change.

 Basic programming operations

 Page 25 of 107

Controlling Power Drivers (solenoid drivers)

The EZ4AXIS17XR has 16 power drivers for actuating solenoids or any
device requiring a relatively large current. While each driver is capable
of switching in excess of 1A the total current to the board is limited by
the current capability of power connector which is 3 max.

Hookup

• Make hookups to the Power Driver Connector as shown below.
There is a + and – connection for each device.

Figure 1 Power Driver Hookups

CAUTION: Do not disconnect inductive loads while power is on. The
resulting spark will damage the drivers. This includes loose connections.

Programming

• To actuate a driver, issue the J command:

Digits following the J command are interpreted as 4-bit binary
equivalents: 1111 binary = 15 decimal = all drivers on

Basic programming operations

Page 26 of 107

 /1gJ15,15,15,15J0,0,0,0GR will toggle all outputs on and off

/1gJ1,0,0,0J0,0,0,0GR will toggle output 1 on axis 1 on and off

Note that Drive 1 and 2 have a 200 Ohm resistor to the 5V supply on
the board, (for driving the optos) this will interfere with the operation
of the output if a +VE supply greater than 5V is used. Please contact
the factory for instructions on removing the resistor.

Bitwise On/Off (not implemented yet)

• The legacy J command described above requires shadow registers to
be maintained by the user software because the command changes all
outputs.

The aJ and aaJ command address this problem by allowing bitwise
set and reset of the outputs.

• The aJ command clears a particular output bit without affecting any
other output bit.

/1aJ1,0,0,0R will turn off Driver 1 on Axis1

/1aJ0,0,0,4R will turn off Driver 3 on Axis4

• The aaJ command sets a particular output bit without affecting aany
other output.

/1aaJ1,0,0,0R will turn on Driver 1 on Axis1

/1aaJ0,8,0,0R will turn on Driver 4 on Axis2

PWM of On/Off Ouput (not implemented yet)

• The aK command allows the outputs to be turned on and off at
multiples of 10Khz intervals.

aK Axis, Output, HiTime, LowTime Where the Times are in
increments of 100uS increments.

/1aK1,3,1,1 creates a 100uS On, 100uS Off (5Khz) PWM on axis1
channel 3

 Advanced programming operations

 Page 27 of 107

4. Advanced programming operations

Essential setup information

Motor direction of rotation considered positive

It is recommended that the positive and negative directions be set up by
suitable connection of the motor wire leads. Typically if the motor does
not turn in the desired direction, switch the A+ and A- leads on the
motor.

Alternatively the direction can be switched by using the F command. For
example /1aM2F1R will reverse the direction considered positive for
Motor 2 and /1F1,0,1,1R will set directions for all 4 axes. This should be
done once on power up only. Do not use this command to change
direction during normal operation. Instead use the P and D commands.
(Using this command during normal operation will result in loss of
position because it instantly inverts the drive to one of the phases). Do
not use this command if using encoder feedback mode.

Changing communication baud rate

The baud rate can be adjusted with the b command. Enter the command
followed by the desired baud rate, which can be 9600, 19200, or from
38400 to 230400. Default baud rate is 9600.

Example: /1b19200R for 19200 baud

Result: The baud rate of Drive 1 is set to 19200 baud.

NOTES

• The baud rate command will usually be stored as program zero and
executes on power-up, so that the drive starts talking at a different
baud rate. To store as program zero, add s0 to the command string:
/1s0b19200R. However do NOT store a high baud-rate command in
program zero until communication has been tested at the higher baud
rate.

• Contact factory for instructions on stopping the EEPROM readback
on power up, if somehow communication is lost with the drive due to
programming with high baud rate in program zero.

• Correct termination and strict daisy-chaining is required for reliable
operation at the higher baud rates.

Advanced programming operations

Page 28 of 107

Readback of parameters from the drive:

Reading firmware version

Example: /1&

This reads the firmware version on Drive 1.

Reading motor positions

To read the position of the currently selected motor, use the /1?0
command:

Example: /1aM4R then issue /1?0 separately. This retrieves the motor
position of Axis 4.

If a command has just been sent to Axis 4, only /1?0 is necessary.

/1?aA reads back the position of all four motors simultaneously.

Similarly use:

 /1?V, /1?aV TBD check this works

/1?L, /1?aL TBD check this works

Reading currently running or most recent command

To read the currently-running or most recent command string, use the $
command.

Example: Issue /1P1234P4321R; then issue /1$ to retrieve the currently-
running or most recent command.

Response will be P1234P4321 No Error.

Default axis selection

• If aM (axis selection command) is omitted in a command string, the
command will go to Axis 1 by default or the last axis selected if
other than Axis 1.

• If a multi-axis command has just been issued, the default for the next
command will always be Axis 1.

 Advanced programming operations

 Page 29 of 107

Designating negative relative move in otherwise positive-move
multi-axis command strings

Example: Use negative numbers to indicate negative relative movement.

/1P10000,-10000,10000,10000

Moves Axes 1, 3, and 4 positive 10000 microsteps, and Axis 2 negative
10000 microsteps.

Designating positive relative move in otherwise negative-
move multi-axis command strings

Example: Use negative numbers to indicate positive relative movement.

/1D10000,10000,-10000,10000

Moves Axes 1, 2, and 4 negative 10000 microsteps, and Axis 3 positive
10000 microsteps.

Pre-select axis and send commands subsequently

Once an axis has been selected, subsequent single-axis commands and
queries will be directed to that axis until another axis is selected or a
multi-axis command is issued (multi-axis commands reset default axis to
Axis 1).

Example:

/1aM4R Selects Axis 4, then:

/1A1000R Moves Axis 4 to absolute position 1000

/1?0 Retrieves Axis 4 motor position

/1L10R Sets Axis 4 acceleration to 10.

Motor sequencing in multi-axis commands

By default, motors responding to multiple multi-axis commands in a
long string will wait until all motors have completed their motion before
moving on to the next command in the string.

In linear interpolation mode the motors are coordinated to reach the same
point at the same time. Eg for drawing straight lines. Issue /1an65536R
to turn on linear interpolation. Implementation date TBD.
1an65536,65536,0,0R sets Axes 1 and 2 into linear interpolation mode
for drawing straight lines. /1an0,0,65536,65536R sets Axes 3 and4 into
linear interpolation mode for drawing straight lines.
/1an65536,65536,65536,65536R sets Axes 1 and 2 into linear
interpolation mode and separately sets axes 3 and 4 into interpolation
mode Issue /1an0 to turn off linear interpolation mode.

Advanced programming operations

Page 30 of 107

Making on-the-fly parameter changes (Immediate Commands)

Overview

Some parameters can be changed “on the fly” (i.e. while another
command is executing) using Immediate commands. This can be done
for one axis (currently selected axis) or for all four axes on the
EZ4AXIS.

NOTE: The run command (R) is not required for on-the-fly commands,
but does not affect operation if added.

Examples

• /1V2000 (no R required if in motion) will change the velocity of the
currently selected axis.

• /1V1000,2000,3000,4000 will change the velocities of all four axes
while in motion.

• /1A1000,2000,3000,4000 will change the targets of all four axes
while in motion.

• /1A1000,,1000 will change the target position for axes 1 and 3 while
in motion.

On-the-fly changes allow truly independent control of the motors, as
opposed to a stored program mode where axes will wait for each other to
reach a coordinate.

Note that these commands must be issued one at a time. So, for example,
/1V1000V3000 will ignore the V3000 if the unit is running.

Immediate Command list

A Absolute position

P Positive relative move

D Negative relative move

V Velocity

L Acceleration factor

m Move current

n Select various modes

J Turn power output drivers on/off (typically used for solenoids)

The Immediate commands are also listed and described in Table 1,
Command Set, which begins on page 70.

 Advanced programming operations

 Page 31 of 107

Analog and Digital Inputs

The EZCTRL17XR has sixteen analog inputs which can be read back as
analog values. Eight of these are parameters of the channel such as
current, and the remaining eight of these are routed to the I/O connector
as 2 per connector.

Read back digital IO input values on the 10 Pin I/O Connector
(/1?41 /1?42 /1?43 /1?44 command)

?41 reads back the digital values associated with 10 pin I/O connector on
channel 1 in order UpperLimit, Home,ADC2,ADC1 where the ADC is
considered high or low depending on the threshold set by the “at”
command (see “at” command below).

The result is a number ranging from 0-15, representing a 4-bit binary
pattern in which:

Bit 0 = ADC1 (Switch 1) Bit 1 = ADC2 (Switch 2)
Bit 2 = Home (Opto 1) Bit 3 = UpperLimit (Opto 2)

Example: Readback number is 9, which is equivalent to digital 1001.
This indicates Opto 2 high. Opto 1 low; Switch 2 low; Switch 1 high.

Read back analog IO input values (the ?aa1 command)

The ?aa1 command reads back the two analog ADC values on the 10

Pin IO connector and the two ADC’s measuring motor currents on the
drive. inputs in this order 4, 3, 2, 1, which are input 4 (From Drive),
input 3 (From Drive), ADC 2, and ADC1 respectively.

Example: /1?aa 1

Response: 8767,6544,6943,10720 No Error. These are the values of
inputs 4, 3, 2, and 1 respectively, expressed by a number from 0-65535
that represents a linear scale of 0-3.3V.

Additional /1?aa1 or /1?aa2 or /1?aa3 or /1?aa4 commands read back
the analog values on the limit/home inputs for the respective axis

Programmable Threshold on Analog Readback (the at com-
mand)

 at Adjust thresholds at which a high or a low is called, for the /?41
comand, on the two analog inputs on the 10 Pin I/O connector..

 Thresholds are expressed as five-digit numbers in a range from
00000-65535, which linearly represents the 0-3.3V input. The
default threshold value is 24200 (1.22V).

 Example: /1at3209999R. This sets the threshold on Axis 3
ADC2 to 09999 (0.5 volts). Key components:

at Threshold command

Advanced programming operations

Page 32 of 107

32 Axis/input identifier, in this case Axis 3 and Limit Input
2 (upper limit). The full range is 11,12,21,22,31,
32,41,42.

09999 Threshold value, 00000−65536, representing 0−3.3V.
(Threshold value = (desired threshold voltage/3.3) x
65535.) Default is 24200 (1.22V).

 The threshold value for limits must always be entered as five

digits. Thus it is necessary, in this example, to insert a leading
zero after the axis/input identifier to reach the required number
of digits.

?aat Read thresholds of all ADCs on the four 10 pin I/O connectors
on the drive. The order of readback (in terms of the axis/input
identifiers explained above) is

 LEFT END Axis1ADC2, Axis1ADC1, Axis2ADC2,
Axis2ADC1, Axi3ADC2, Axis3ADC1, Axis4ADC2,
Axis4ADC1. RIGHT END
Example readback /1?aat :
6144,6144,6144,6144,9999,6144,6144,6144 No Error

Figure 2 EZ4AXIS17XR Input Connections

 Advanced programming operations

 Page 33 of 107

Input-Dependent Basic Operations

Halt and wait for IO or Limits (the H command)

Motors may be halted, to wait in response to the status of either the
Digital/Analog IO switches or the Limit switches before executing a
command.

For this purpose, the H command is followed by a three-digit operand,
The operands specify which input and what polarity the axis will wait for
after halting.

• Three-digit operands apply to the inputs on the 10-pin I/O
connectors. The most significant digit is axis, second digit is polarity
(high or low), and the third digit is limit 1 or 2:

101 wait for low on Axis 1 ADC1

111 wait for high on Axis 1 ADC1

102 wait for low on Axis 1 ADC2

112 wait for high on Axis 1 ADC2

103 wait for low on Axis 1 limit 1 (lower)

113 wait for high on Axis 1 limit 1 (lower)

104 wait for low on Axis 1 limit 2 (upper)

114 wait for high on Axis 1 limit 2 (upper)

201 wait for low on Axis 1 ADC1

211 wait for high on Axis 1 ADC1

202 wait for low on Axis 1 ADC2

212 wait for high on Axis 1 ADC2

203 wait for low on Axis 1 limit 1 (lower)

213 wait for high on Axis 1 limit 1 (lower)

204 wait for low on Axis 1 limit 2 (upper)

214 wait for high on Axis 1 limit 2 (upper)

301 wait for low on Axis 1 ADC1

311 wait for high on Axis 1 ADC1

302 wait for low on Axis 1 ADC2

312 wait for high on Axis 1 ADC2

303 wait for low on Axis 1 limit 1 (lower)

313 wait for high on Axis 1 limit 1 (lower)

304 wait for low on Axis 1 limit 2 (upper)

314 wait for high on Axis 1 limit 2 (upper)

Advanced programming operations

Page 34 of 107

401 wait for low on Axis 1 ADC1

411 wait for high on Axis 1 ADC1

402 wait for low on Axis 1 ADC2

412 wait for high on Axis 1 ADC2

403 wait for low on Axis 1 limit 1 (lower)

413 wait for high on Axis 1 limit 1 (lower)

404 wait for low on Axis 1 limit 2 (upper)

414 wait for high on Axis 1 limit 2 (upper)

NOTE: If an edge detect is desired, a look for low and a look for
high can be placed adjacent to each other, e.g., H301H311 is a ris-
ing-edge detect.

Examples:

/1H101P100R Halt and wait for low on Axis 1 Limit input 1 (lower
limit) and then move positive 100 microsteps.

/1gH211P100GR (Looping example) Halt and wait for high on Axis 2
Limit input 1 (lower limit) and then move positive 100 microsteps. This
repeats infinitely due to the loop created by g and G

NOTE: Issuing /1R will also break through a halt.

NOTE: Issue /1T to Terminate

Skip and Branch on IO or limits (the S and e commands)

You can program the EZ to skip an instruction within a command string
and branch to another command string stored in EEPROM.

Overview

• Skipping is implemented using the S command, which is
accompanied by three-digit operand (as described for the H

command, above), indicating the condition at one of the inputs.

For example, S102 means “Skip next instruction if there is a low on
Axis 1 limit 2 (upper limit).”

Or, S112 means “Skip next instruction if there is a high on Axis 1
limit 2 (upper limit).”

• Branching is implemented with the e or execute command, which
tells the drive to run the command string in a specific memory
location 0-15. For example, e2 means run the string residing in
location 2. Note that e2 is a GOTO, not a GOSUB.

Example

The following example stores two command strings in EEPROM
locations 0 and 1, and the program skips an instruction and switches
from one string to the other depending on the state of input 3.

 Advanced programming operations

 Page 35 of 107

Send these command strings:

/1s0gA0A10000S112e1G0R (stored string 0, executed at startup)

/1s1gA0A1000S102e0G0R (stored string 1)

Stored string 0 command breakdown:

/1 Talk to device number 1 on the EZ bus (Drive 1).

s0 Store following in memory location 0 (executes on power-up).

g Start loop.

A0 Go to absolute position 0.

A10000 Go to absolute position 10000.

S112 Skip next instruction if 1 (high) on axis 1 input 2

e1 Jump to string 1 (execute command string stored in memory
location 1.) (This is the branch operation.)

G0 End of loop (0 indicates infinite loop).

R Run.

Stored string 1 command breakdown:

/1 Talk to device number 1 on the EZ bus (Drive 1).

s1 Store what follows in memory location 1.

g Start loop.

A0 Go to absolute position 0.

A1000 Go to absolute position 1000.

S102 Skip next instruction if 0 (low) on axis 1 input 2.

e0 Jump to string 0 (execute command string stored in memory
location 0.) (This is the branch operation.)

G0 End of loop (0 indicates infinite loop).

R Run.

Result: At power-up, the code will cycle the motor between position A0
and A10000 if input 2 is high, and between A0 and A1000 if input 2 is
low.

NOTE: Loops can be exited by storing nothing in a memory location
and skipping to that location.

For example, the command /1s14R stores nothing in memory location 14,
and a skip to that location (eg S112e14) will exit the loop.

Advanced programming operations

Page 36 of 107

Advanced looping techniques

Create a nested loop

The following example shows how to construct a nested loop, or loop
within a loop. Nested loops can be up to four levels deep.

Send this command string:

/1aM2gA1000A10000gA1000A10000G10G100R

Command breakdown:

/1 Talk to device at Address 1 on the EZ bus.

aM2 Talk to Axis 2.

g Start outer loop.

A1000 Go to absolute position 1000.

A10000 Go to absolute position 10000.

g Start inner loop.

A1000 Go to absolute position 1000.

A10000 Go to absolute position 10000.

G10 Repeat inner loop 10 times. (end of Inner loop).

G100 Repeat outer loop 100 times. (end of outer loop).

R Run.

Result: The first g (lower case) command starts the outer loop, and the
second g command starts the inner loop. The first G (upper case)
command terminates the inner loop and specifies how many times it is
run, while the second G command does the same for the outer loop.

To create an endless nested loop, change the second G command from
G100 to G0 (zero). The nested loop will now run until interrupted by the
T command, e.g. /1T. (Do not use /1T2, /1T3 etc. to terminate a loop
since the behavior is undefined and may change in the future.)

Set up standalone operation

Standalone operation is implemented by storing the appropriate
command string in EEPROM memory location 0. The command string in
this location runs automatically at power-up. Examples of this are shown
on pages 38 and 39.

 Advanced programming operations

 Page 37 of 107

Readjusting velocity, acceleration, and current

If the motor behavior is problematic using the standard values for the
EZ4AXISXR17 provided in Section 3, here are some tips for making
corrective adjustments to velocity, acceleration, and current.

Command Description

V Velocity: reduce velocity if the motor stalls, or try adjusting
L or m as described below. Maximum achievable velocity
depends on the available supply voltage. Also, move
current may need to be adjusted to obtain a desired velocity.
Standard setting is V1000.

L Acceleration (acceleration factor): depends on adequate
supply power and voltage. If available power is insufficient,
back off acceleration. Increase voltage, if possible, to
overcome the motor’s back emf. Standard setting is L10.

 The EZAXIS17XR equation for acceleration is:
Acceleration (in microsteps / sec^2) = (L value) x
(100,000,000/65536) For example, if V=10000 and L=1, it
will require 6.55 seconds to reach final velocity.
V= (LValue)*(100,000,000/65536)*Time

m Maximum move current: more current provides more force
and more acceleration. If motor stalls, try increasing this
value. Given as a percentage of the maximum output driver
current, which is 2A for the EZ4AXIS17XR and 0.5Afor
the EZ4AXIS17XR. Standard setting is m30 (30% of 0.5A).

h Hold current: increase if motor is slipping when attempting
to hold a position. Given as a percentage of the maximum
output driver current, which is 0.5Afor the EZ4AXIS17XR.
Standard setting is h10 (10% of 0.5A).

For example, if a motor doesn’t move and makes a hammering
sound, it is stalled. Decreasing V or L may be needed. Move current
(m) may also need to be increased or supply voltage may need to be
increased.

Note that if a another cause of a motor buzzing but not moving is
that only one phase is connected or one of the phase drivers is blown.
Another symptom of only one phase being connected is that the mo-
tor may spin in a random direction with low torque.

Advanced programming operations

Page 38 of 107

Single-Axis programming supplemental examples

The following single-axis programming examples are provided to
supplement the preceding instructions.

Example #1 (loop: moves with waits)

 /1aM2gA10000M500A0M500G10R

Command breakdown:

/ Start character. Tells the EZSteppers® that a command is
coming in.

1 Drive 1 (device address, set via address switch on device).

aM2 Axis 2

g Start a repeat loop.

A10000 Turn to absolute position 10000.

M500 Wait for 500 milliseconds.

A0 Turn to absolute position 0.

M500 Wait for 500 milliseconds.

G10 Repeat string 10 times beginning from the location of the g
command.

R Run the command.

NOTE: To terminate the above loop while in progress, issue the T

command, e.g., /1T2 for Axis 2. This terminates any programs running
on the drive card. (Do not use /1T2, /1T3 etc. to terminate a loop since
the behavior is undefined and may change in the future.)

Example #2 (loop: set current, wait for Switch 2 closure, go
home)

NOTE: This is a standalone operation example.

/1s0aM1m75h10gJ15,15,15,15M500J0,0,0,0M500G10H104A1000A0Z1

0000R

Command breakdown:

/1s0 Stores the program that follows in EEPROM location 0 (string
0 is executed on power-up).

aM1 Select Axis 1.

m75 Set move current to 75% of max.

h10 Set hold current to 10% of max.

g Start a loop.

J15,0,0,0 Turn on all on/off drivers for Axis 1.

M500 Wait 500 ms.

J0,0,0,0 Turn off both on/off drivers for Axis 1

 Advanced programming operations

 Page 39 of 107

M500 Wait 500 ms.

G10 Repeat loop above 10 times.

H104 Halt and wait axis 1 input4 to go low.

A1000 Move to absolute position 1000.

A0 Move to position 0.

Z10000 Home the stepper. Maximum steps allowed to find opto is set to
10000.

R Run.

Example #3 (loop: monitor four switches and execute four dif-
ferent programs depending on which switch input is pushed)

NOTE: This is a standalone operation example, which stores five com-
mand strings for an endless loop. This loop runs automatically at startup,
because it begins at the program 0 location.

Setup

/1s0aM3gS111e1S112e2S113e3S114e4G0R

Stores command string in EEPROM location 0 (string 0 is executed on
power-up). (S111= skip next instruction if high on axis input 1.)

/1s1A1000e0R Stores command string in EEPROM location 1.

/1s2A2000e0R Stores command string in EEPROM location 2.

/1s3A3000e0R Stores command string in EEPROM location 3.

/1s4A4000e0R Stores command string in EEPROM location 4.

Execution

• At power-up, string 0 automatically executes on Axis 3 and loops
around sampling each switch one by one (S111, etc.), and skipping
the subsequent instruction if it is not depressed.

• If a switch—for example Axis 1 Input 1—is depressed, string 1 is
executed, which moves the stepper to absolute position 1000.

• Execution then returns to string 0, due to the e0 command at the end
of the string.

• If the switch is still depressed it will jump to string 1 again, but since
the motor is already at that position there will be no visible motion.

• If another switch is closed, the program will also jump to that stored
string.

To terminate this endless loop, issue /1T. This stops all commands
executing on device with address 1.

NOTE: Using an e command to go to another program is more of a
“GOTO” than a “GOSUB” since execution does not return to the original
departure point .

Advanced programming operations

Page 40 of 107

Example #4 (loop: move 1000 steps forward on rising edge of
Axis 1 Input 1)

/1aM2gH101H111P1000G0R

The endless loop halts and first waits for a 0 level on Axis 1 Input 1, then
waits for a high on Axis 1 Input 1.

Then a relative move of 1000 steps is issued, and the program returns to
the beginning to look for another rising edge.

NOTE: To terminate the above loop while in progress, issue /1T.

Example #5 (loop: use threshold setting to regulate pressure)

It is possible to regulate pressure by turning a pump on or off depending
on an analog value read back, by designating the threshold of the
one/zero call as the regulation point.

/1at3208000gS302P1000G0R.

This command first sets a threshold level using the at command. Then it
starts an endless loop during which it responds to a high on axis 3 input 2
by moving the motor 1000 microsteps positive. As long as axis 3 input 2
remains low, it skips the move command (P).

Multiple-axis/multiple drive supplemental examples

The following examples utilize multi-axis commands.

Example #5: coordinated motion with all cards on a bus, and
all motors on each card, performing same motion

This example also shows how to address all drives and all axes on a bus.

/_A1000,1000,1000,1000R

Command breakdown:

/_ (Slash then underscore) Select all drives on bus.

A1000 Go to absolute position 1000. The four comma-delineated
positions above represent the same command applied to the four
axes on the drives.

R Run. All motors on all drives go to absolute position 1000.

 Advanced programming operations

 Page 41 of 107

Example #6: coordinated motion between two separate drive
cards.

This example also shows how to set up commands without running and
then later send a Run command separately so that multiple motors/drives
start and run at the same time (within 10mS).

NOTE: The following are multi-axis commands.

/1A1000,200,300,400 Set up drive card 1 Axis 1 to absolute position
1000; Axis 2 to position 200; Axis 3 to position
300; and Axis 4 to position 400.

/2A200,300,400,1000 Set up Drive card 2 Axis 1 to absolute position
200; Axis 2 to position 300; Axis 3 to position
400; and Axis 4 to position 1000.

/AR Run current commands in buffer for all axes on
Drive card 1 and Drive card 2. The /A command
addresses a bank defined as Drives 1 and 2.
(Banks are described in Appendix 1, Addressing
Methods Reference.)

Example #7: synchronized motion among different drives

This example also shows how to set up commands without running and
then later send a Run command separately so that multiple motors/drives
start and run at the same time (within 10mS).

/1aM3A1000 Set up Drive 1 Axis 3 to move to absolute position 1000.

/2aM1A100 Set up Drive 2 Axis 1 to move to absolute position 100.

/AR Run commands on Drive 1 Drive 2. The /A command
addresses a bank defined as Drives 1 and 2. (Banks are
described in Appendix 1, Addressing Methods
Reference).

Example #8: select drives in bank, then issue command to
bank

If no axis is indicated in any command, the command is issued to the last
axis specified on each drive in the addressed bank. So axes can be pre-
selected prior to issuing the bank command, for example:

/1aM3R Select drive card 1 Axis 3.

/2aM1R Select drive card 2 Axis 1.

/AP1000R Move drive card 1 Axis 3 and drive card 2 Axis 1 relative
1000 microsteps positive. The /A command addresses a
bank defined as Drive cards 1 and 2. (Banks are described
in Appendix 1, Addressing Methods Reference.)

Limits (n2)

Page 42 of 107

5. Limits (n2)

Overview

Each axis can be set up to stop motor rotation when a mechanical limit is
signaled by a switch closure or opening. Limits are not active by default,
and must be specifically turned on. /1n2R or /1n2,2,2,2R

When a limit is engaged, the motor will not respond to a move command
in the direction in which the limit is engaged, but will perform a move in
the direction that backs out of the limit.

NOTE: It is necessary to turn off limits while homing, because the lim-
its will inhibit a correct homing position from being achieved.

Hookup

Make connections at the Limit/home connector for the relevant axis (see
figure below). Each 6-pin limit/home connector provides two inputs: an
upper limit and a lower limit. The upper limit operates in the positive
movement direction, while the lower limit operates in the negative
movement direction. The lower limit is also the homing input, as
determined by programming.

Status of limits are read back by the /1?41 , /1?42, /1?43 and /1?44
command.

Figure 3 Limit Connections

 Limits (n2)

 Page 43 of 107

The inputs may use either optical or mechanical switching devices, and
include outputs for power LEDs. These outputs are internally connected
to +5V through 200-ohm resistors. For sensors such as Hall sensors that
need direct access to +5V the 200-ohm resistors may be shorted across.

500mA total is available across all 5V connections (Encoder + LEDS).

NOTE: The inputs are relatively high impedance at 10K ohms and will
pick up noise if bundled with the motor wires, etc. For long cable runs,
each input line should be shielded. The addition of a 0.1µF ceramic ca-
pacitor from the input to ground at the board connector may be an alter-
native to shielding, but could slow the response.

Basic limits setup

As needed, refer to “Commands for limits,” below, for additional
clarification.

1. Set up mechanical assembly with limit switch or switches placed in
desired location(s).

2. Activate limits on desired axis by issuing the n2 command, e.g.,
/1aM2n2R. Or use multi axis /1n2,2,0,2R

3. Ensure that a positive move, e.g. /1aM1P1000R, moves toward the
upper limit and away from the lower limit. If the motor moves in the
wrong direction, reverse the connections to only one of the windings
of the motor. Inputs can be read by /1?41 etc

4. Set limit polarity if necessary:

The default condition expects the limit switch to be low when away
from the limit (as is the case when an optical switch is used). If the
limit switch is to be high when away from the limit (as with a
normally-open switch), issue the command f1 to reverse the polarity
that is expected. This can be done per axis; for example,
/1aM1f1aM2f0R selects different polarities for the limits of Axes 1
and 2. So f1 = normally open, and f0 = normally closed. Or use multi
axis /1f1,0,1,1R etc.

5. Set limit input threshold if needed with the at command (for exam-
ple, because some sensors will not pull to a TTL low level when
closed).

To calculate the threshold number to be used in the command: (De-
sired threshold voltage/3.3) x 65535 = threshold number. Example
for 2.00 volts: /1at2243690R, where 22 indicates Axis 2 input 2 (up-
per limit) and 43690 is the threshold number for 2.00 volts accord-
ing to the formula above (note this number must always be 5 digit,
use leading zeros as necessary.

Confirm thresholds with the ?aat2 command.

6. Issue move commands and confirm that the motor stops when it
reaches the limit or limits that have been set up.

Limits (n2)

Page 44 of 107

Commands for limits

n2 Makes limits active on a per-axis basis, e.g., /1aM3n2R activates
limits on Axis 3.

f Set limits polarity. Set expected limit switch to be normally open
or normally closed. Normally open is f1 and normally closed is
f0. The default is normally closed. Normally closed is generally
preferable because opening a switch can interrupt current to
terminate motion immediately.

at Adjust thresholds, if needed. For example, the sensor used for
limit switching may not pull to a full TTL level, as is the case
with a reflective sensor. The default threshold is 24200 (1.22V).
 Thresholds are expressed as five-digit numbers in a
range from 00000-65535, which linearly represents the 0-3.3V
input. The default threshold value is 24200 (1.22V).

 Example: /1at3243690R. This sets the threshold on Axis 3 input
2 (upper limit) to 43690 (2 Volts). Key components:

at Threshold command

32 Axis/input identifier, in this case Axis 3 and Limit Input
2 (upper limit). The full range is 11,12,21,22,31,
32,41,42.

43690 Threshold value, 43690, representing 0−3.3V. (Thresh-
old Voltage = 3.3V x(43690/65536.)

 The threshold value for limits must always be entered as five
digits. Thus it is necessary, in this example, to insert a leading
zero after the axis/input identifier to reach the required number
of digits.

 To set multiple thresholds, repeat the at command for each
threshold to be set:

 1at1115952at2105952at1211904at2211904R.

?aat Read thresholds of all home/limit inputs on the drive. 12, 11, 22,
21, 32, 31, 42, 41, where 21, for example, indicates Axis 2 input
1Example readback:
6144,6144,6144,6144,9999,6144,6144,6144 No Error

NOTE: Input 1 is Lower Limit/Home, and input 2 is Upper
Limit. The response is a number from 00000-65536, which rep-
resents the 0-3.3V range available at each input.

 Emergency stop / kill move

 Page 45 of 107

6. Emergency stop / kill move

Overview

This command still to be implemented.

Digital IO (switch-controlled) applications

Page 46 of 107

7. Digital IO (switch-controlled) applications

The EZ4AXIS can respond to on/off states applied to the Analog/Digital
IO 8-pin connector. A switched input can be used to notify an axis when
a specific mechanical position is reached, or for any other practical
purpose requiring an on/off signal, such as:

• Halt; then move or execute another program stored in memory

• Skip the next step

• Wait for another change in status of the input

• Monitor an input using an endless loop, or base an action on the
status of an input while running the loop a specified number of times.

Hookups

The 10-pin Analog/Digital IO connector provides a set of four
multipurpose inputs, accessible by any of the four axes via programming.
All inputs operate on 0 to 3.3V level signals, although thresholds can be
adjusted to accommodate non-TTL level switch closures.

Status of digital inputs are read back by the /1?41 , /1?42, /1?43 and
/1?44 command.

 The four digital inputs consist of 2 analog inputs thresholded with the at
command to give two digital inputs and two LV TTL level digital inputs.

Figure 4 Switch inputs for the EZ4AXIS17XR

 Digital IO (switch-controlled) applications

 Page 47 of 107

The inputs may use either optical or mechanical switching devices, and
include outputs for power for LEDs. These outputs are internally
connected to +5V through 200-ohm resistors. For sensors such as Hall
sensors that need direct access to +5V, the 200-ohm resistors may be
shorted across. (Contact factory for removal instructions)

500mA total is available across all 5V connections (Encoder + LEDS).

Optical or mechanical switches may be used on any input. If four optical
switches are desired for the IO connector, power for the additional
optical switches can be drawn from the 5V supply pin on one of the
encoder connectors. This power may require an external resistor in series
with the LED in the optical switch.

NOTE: The inputs are relatively high impedance at 10K ohms and will
pick up noise if bundled with the motor wires, etc. For long cable runs,
each input line should be shielded. The addition of a 0.1µF ceramic ca-
pacitor from the input to ground at the board connector may be an alter-
native to shielding, but could slow the response.

Commands

?aa Read back ADC values (values after analog/digital conversion)
on specified input (/1?aa1= Axis 1, /1?aa2=Axis 2, etc.). These
values are on a scale of 0 -65535 as the input varies from

0−3.3V. The inputs as shipped have a resolution of about 7 bits,
but can be improved to exceed 10 bits with the removal of the
input overvoltage protection circuitry (call AllMotion for
details).

at Adjust thresholds. Thresholds can be set for on/off detection,
since IO connector inputs are essentially analog. The default
threshold value is 24200 (1.22V).

 Example: /1at309999R. This sets the threshold on input 3 to
09999 (2.02V).

3 Input identifier, in this case Input 3 (Opto 1).

09999 Threshold value, 00000−65536, representing 0−3.3V.
(Threshold value = (desired threshold voltage/3.3) x
65536.)

 Note that it is necessary to insert a leading zero after the
input identifier (3), since the threshold value must al-
ways be entered as five digits (00000-65536).

NOTE: In prior firmware versions, all thresholds were simulta-
neously programmed when input 4 on the 8-pin IO connector
was set using the /at4XXXXXR command.

?aat Read back thresholds for all eight inputs on the 10-pin
connectors. The readback order is inputs 4, 3, 2, 1.

H Halt

S Skip next command

Digital IO (switch-controlled) applications

Page 48 of 107

M Wait

e Execute command string stored in specified EEPROM memory
location. Used for branching in conjunction with halts, skips, and
waits. E.g., /1e2 means “execute contents of memory location 2.”

 Analog control applications

 Page 49 of 107

8. Analog control applications

This section describes analog control applications that use one or more of
the inputs on the 8-pin Analog/Digital IO Connector.

These applications utilize potentiometers as the input devices. However,

any input ranging from 0−3.3V will be accepted.

Analog inputs

The four inputs on the 8-pin connector are all ADC.

The ADC values, representing the potentiometer positions, can be read
using the ?aa command (/1?aa1 = axis 1, /1?aa2 = axis 2, etc.). These
values are on a scale of 0 - 16368 as the input varies from 0 - 3.3V. The
inputs as shipped are good to about 7 bits, but can be made to be better
than 10 bits with the removal of the input overvoltage protection
circuitry (contact AllMotion for instructions). The EZ4AXIS ignores all
voltages higher than 3.3V.

Noise considerations

The inputs are relatively high impedance at 10K ohms and will pick up
noise if bundled with the motor wires, etc. For long cable runs, each
input line should be shielded. The addition of a 0.1µF ceramic capacitor
from the input to ground at the board connector may be an alternative to
shielding, but could slow the response.

Homing

Page 50 of 107

9. Homing

Overview

Homing provides a known starting point for each motor, from which
each operation can begin, and from which absolute positions are
calculated. There are two homing modes:

• N1 Mode, homing to a TTL input on the 6-pin Home/Limit
connector for that axis. This is the default homing mode. Typically a
mechanical or optical switch is set up to open or close when the
motor reaches the home position. See “Homing to opto/switch
(default N1 mode),” below.

• N2 Mode, homing to an index. In this mode, the index pulse from an
encoder is used for homing. For index homing, see “Homing to
encoder index (N2 mode),” below.

Homing to opto/switch (default N1 mode)

Hookups

Each axis on the drive has its own set of limit/home inputs on 10-pin
connectors, as shown below. The lower limit input is also the home
input. Status of home/limit inputs are read back by the /1?41 , /1?42,
/1?43 and /1?44 command.

Figure 5 Home/Limit Connections production drive (different on prototype
model)

 Homing

 Page 51 of 107

These connections can be used with any device that sends out TTL level
signals. Typically optical or mechanical switching devices, and include
power outputs for optical LEDs. The High Low threshold can also be
changed using the at command. Further since each input has a pullup
resistor built into the board, a simple switch to ground can be used as a
home switch. See the wiring diagram on the AllMotion website
EZ4AXIS product page, for more detail if needed.

Noise considerations

The inputs are relatively high impedance at 10K ohms and will pick up
noise if bundled with the motor wires, etc. For long cable runs, each
input line should be shielded. The addition of a 0.1µF ceramic capacitor
from the input to ground at the board connector may be an alternative to
shielding, but could slow the response.

Homing behavior

The Z command initializes the motor to a known position, called Home
(the Home position is usually aligned with a switch closure or opening).
This is position 0. All absolute positions are relative to the Home
position. When the Z command is issued, the motor turns toward position
0 until the home switch is interrupted. If the switch is already interrupted,
the motor will back out and return until the switch is re-interrupted.

Basic homing setup

Refer to “Commands for homing to opto/switch,” below, as needed for
additional clarification.

NOTE: Homing occurs at the speed currently set by the V (velocity)
command. For accuracy and reliability, it is important to home at a slow
speed. If high-speed homing is desired, home at high speed first and then
home again at low speed.

1. Make sure switch and flag are set up to be unambiguous. For exam-
ple, when the motor is at one end of travel, the home flag should in-
terrupt the switch; and when at other end of travel, the home flag
should not interrupt the switch. There should be only one zero-to-one
transition possible on the home input in the whole range of motor ro-
tation. Do not use a tiny flag that you can get on the wrong side of.

2. Ensure that a positive move, e.g. /1aM1P1000R, moves away from
home and the home flag. If the motor does not move away from
home on a positive move, reverse the connections to only one of the
windings of the stepper motor. (Do not use f command to fix this)

3. Set home flag polarity if necessary. Again, before doing this step
make sure the P1000 command moves away from home.

The default condition expects the home flag to be low when away
from home (as is the case when an optical switch is used). If home
flag is to be high when away from home (as in the case of a
normally-open switch), issue the command f1 to reverse the polarity

Homing

Page 52 of 107

that is expected of the home flag. This can be done per axis; for
example, /1aM1f1aM2f0R selects different polarities for the home
flags of Axes 1 and 2. So f1 = normally open, and f0 = normally
closed. Or use multi axis command /1f1,0,1,1R etc.

NOTE: If the home flag polarity is set incorrectly, or if the connec-
tions to the motor are reversedthe motor may move in the wrong di-
rection when attempting to home.

4. Set home input threshold if needed with the at command; confirm
with the ?aat command: (Desired threshold voltage/3.3) x 65536 =
threshold number. Example for 2.00 volts: /1at3109920R, where 31
indicates Axis 3 input 1 and 09920 is the threshold number accord-
ing to the formula above (a zero is added at the beginning because
this must be entered as five digits).

5. Issue the Z command with the desired maximum number of steps, for
example /1aM1Z100000R. Or with the home flag polarity setting in-
cluded, for example /1aM1f1Z100000. Observe motor behavior.

Commands for homing to opto/switch

N1 Enter the Homing to Switch mode. This is the default mode, so it
is not usually necessary to issue this command.

Z The homing command. The maximum number of steps allowed
to go toward home is defined by the Z command operand, e.g.,
Z4000.

f Set Home polarity. Set expected home switch to be normally
open or normally closed. Normally open is f1 and normally
closed is f0. The default is normally closed. Normally closed is
generally preferable because it is “fail safe” in case of
disconnection of the sensor.

NOTE: If the f command is not set correctly, the motor may
move in the wrong direction when homing.

at Adjust thresholds, if needed. The default is 1.24V.

 For example, consider a home sensor that doesn’t fully pull to a
TTL low level (e.g., a reflective sensor). The threshold can be
adjusted to accommodate the sensor’s output level without
external signal conditioning.

 Thresholds are expressed as five-digit numbers in a range from
00000-65535, which linearly represents the 0-3.3V input. The
default threshold value is 24200 (1.24V).

 See example next page.

 Homing

 Page 53 of 107

 Example: /1at31xxxxxR. This sets the threshold on Axis 3 input 1
(lower limit/home) to xxxxx (.

Key components:

31 Axis/input identifier, in this case Axis 3 and Input 1. The
Home input is always Input 1.

xxxxx Threshold value, 00000−65536, representing 0−3.3V.
(Threshold value = (desired threshold voltage/3.3) x
65536.)

 The threshold value for home/limits must always be entered as
five digits. Thus it is necessary, in this example, to insert a
leading zero after the axis/input identifier to reach the required
number of digits.

?aat (Requires firmware version 7.50 or higher.) Read thresholds of
all home/limit inputs on the drive. The order of readback (in
terms of the axis/input identifiers explained above) is 12, 11, 22,
21, 32, 31, 42, 41.
Example readback:
6144,6144,6144,6144,9999,6144,6144,6144 No Error

NOTE: Input 1 is Lower Limit/Home, and input 2 is Upper
Limit.

Homing

Page 54 of 107

Homing to encoder index (N2 mode)

NOTE: Homing should be done at a slow speed, especially if homing to
a narrow index pulse on an encoder, which could be missed at high
speeds.

Overview

In this mode, the specified axis (Axis 1 or 2) will home to the index of
the encoder associated with the axis. Note that the index is sampled at a
20kHz rate, and may be missed if motor velocity is too high. Velocity
must be such that the index is at least 100µs in width.

Hookup

For encoder hookup, refer to wiring diagram.

Commands

N2 Enter the Home to Encoder Index mode.

Example

/1aM1N2Z10000R Home Motor1 to Encoder1 Index

./1aM2N2Z10000R Home Motor2 to Encoder2 Index.

 Using encoders

 Page 55 of 107

10. Using encoders

Overview

Use 8 pin encoder input provided. Encoders may be used in the
following ways:

• Encoder Following: Motor follows the count generated by one of
the two auxiliary encoder inputs.

• Position Correction: Motor position is automatically corrected if
wrong position is detected. This is done by the encoders dedicated to
each of the motor.

• Auto recovery in Position Correction mode: auto recovery scripts
are run if Position Correction cannot correct a motor position.

• Overload report mode: This mode verifies the current position
against the encoder and reports any deviation, but does not attempt to
auto correct the error.

• Homing: provide a starting point for the motor using encoder index
pulses. This mode is explained in “Homing to encoder index (N2
mode)” on page 54.

Using encoders

Page 56 of 107

Encoder hookup

There are four encoder input connectors, The connectors accept index
and AB quadrature pulses, and provide 5V power to the encoders. See
Figure 6 below. (Also has optional absolute encoder capability which is
not implemented yet)

Electrical Notes:

• 500mA total is available across all 5V connections (Encoder +
LEDS).

• Encoders must have 0.2V low to >4V high at the connector.

• Can operate with 3.3V encoder with factory modification.

• Max Encoder frequency is 4MHz

• Contact factory for optional absolute encoder connection.

• Refer to wiring diagram also.

Figure 6 Feedback Encoder Connectors

NOTE: Cable from encoders should be shielded, especially in environ-
ments with significant noise. They will pick up noise if bundled with mo-
tor wires, etc. For long cable runs, each input line should be individually
shielded.

 Using encoders

 Page 57 of 107

Encoder following mode (n64)

NOTE: THIS FUNCTION IS NOT IMPLEMENTED YET IN THE
EZ4AXISXR YET –USE EZ4AXIS FOR THIS FUNCTION

NOTE:

This mode can be used with either Axis 1 or Axis 2, which have encoder
inputs.

Overview

In this mode, also called “Slave to Counter,” the motor takes the AB
count from an encoder not coupled to the motor, and uses this count as a
commanded position. Motor position and velocity vary with encoder
position and velocity.

For example, an encoder might be attached to a turn-knob on a control
panel, so that turning the knob causes a stepper motor to turn.

Setting up encoder following mode

 Set up encoder on shaft with knob or other desired mechanism.

6. Connect the encoder to the board. Refer to Figure 6 Feedback En-
coder Connectors, page 56.

7. Turn the shaft to its desired starting position.

8. Move the motor to its desired starting position using move com-
mands such as P or D, addressed to the axis, e.g., /1aM2D100000R.

9. Once the shaft and the motor are at the desired starting positions, ze-
ro the motor and encoder using the z0 command addressed to the ax-
is, e.g., /1aM2z0R.

10. Turn on the encoder following mode by issuing n64 for Axis 1 or
Axis 2, whichever is appropriate. For example, /1aM2n64R turns the
mode on for Axis 2 on Drive 1.

11. Turn the mechanism to which the encoder is attached and observe
how the motor moves.

Example command string (after motor has been moved to desired
starting position): /2aM2z0am256n64R

TBD does z0 zero the following encoder

Commands for encoder following mode

n64 Enters encoder following mode.

z0 Zeroes motor with encoder. Sets encoder count to zero at the
current motor and encoder positions. Both the motor and the
encoder are to be turned to their desired zero positions before
this command is issued. The motor will turn in different

Using encoders

Page 58 of 107

directions above and below the zero point, unless it is set at a
physical extreme.

am Multiplier. Sets the ratio of motor movement to encoder
movement. If set to 256, the ratio is 1:1; if set to 512 the ratio is
2:1, etc. Default setting is 256.

 Using encoders

 Page 59 of 107

Encoder position correction mode (n8)

Overview

Position correction mode moves the motor until the quadrature encoder
count (not microsteps) correctly represents the commanded position. If
the motor stalls during a move, the move will be re-attempted until the
encoder reads the correct number. If the move cannot be completed, an
error message is issued.

There are two main types of encoder feedback arrangement: the first is
where the encoder is placed on the motor shaft. The second is where the
encoder is placed on the component that is finally positioned, and may be
only loosely coupled to the motor due to backlash, etc. The position
correction mode will work with either feedback arrangement.

Functional description

In position correction mode, the EZStepper® determines a stalled or
overload condition by checking to see if the encoder is tracking the
commanded trajectory. If the encoder is not following the commanded
trajectory within the error specified by aC, a stall is determined. The
drive will automatically retry any stalled moves up to the number of
times set by the au command. If the motor remains stalled, an overload
condition is determined. The EZ4AXIS will NOT halt any strings or
loops upon detection of a stall.

When an overload condition is detected, it is reported back as an upper or
lower case “I” (Error 9). Status messages are explained in Appendix 4.
This status can be used by an external computer to execute a recovery
script (or alternatively, the drive can be configured to execute stored
recovery scripts as described in “Auto recovery in position correction
mode (n512, n1024, n1536),” page 64.)

The position correction mode utilizes a correction algorithm, which
operates to bring the motors to within the deadband value set by the aC
command. This algorithm runs continuously while the stepper motor is in
motion and will detect a motor that is stalled or lagging by more than aC
during a move. At that point the axis will stop and reissue the move
starting from zero velocity so as to slowly spin up a motor that may have
stalled at high speed. It is important to set the aC value to a reasonable
minimum number (for example, 50, the default value) or the drive will
always be attempting to correct.

Subsequent disturbances greater than aC will result in the correction
algorithm being engaged and busy status being asserted.

NOTE: Some earlier versions of Firmware used the command C

instead of aC to set the deadband

Using encoders

Page 60 of 107

Commands for encoder position correction mode

n8 Enters position correction mode.

aE Sets encoder ratio, the ratio between encoder movement and
stepper motor movement. Default is 1000. Range is 1000-10^6.

NOTE: If the encoder ratio (aE command) has been set, the
units of the move and velocity commands change to microstep-
equivalent encoder counts/second.

au (optional) Sets overload timeout, the number of times that a
move will be retried in case of a stall before an overload error
notification is sent. Default is 10. Range is 1-64999.

aC (optional) Sets position correction deadband, the distance (in
encoder counts) that the stepper is allowed to be in error before
position correction using encoder feedback is applied. Default is
50 encoder counts. Range is 1-64999.

?8 Reports encoder position (count) on one axis.

?a8 Reports encoder position (count) on all axes

NOTE: It is sometimes required to set hold current (the h command) at
least equal to move current (the m command) so that there is no reduc-
tion in torque at the end of a move. Lower holding torque allows the de-
tent torque to influence the position of the motor.

Setting Up encoder position correction mode

For this procedure, the encoder must be mounted in the position in which
it will be used, and wired to the EZ4AXIS17XR.

1. Make sure motor turns in the positive in the direction
you intend

First switch the A+ and A- on one phase coil of the motor until the
motor turns positive in the direction intended for the mechanism you
have. Confirm that the encoder count increases when the motor
moves in the positive direction using the ?a8 command, e.g., /1?a8.
If not, swap the AB lines from the encoder, which will reverse the
count direction.

2. Calculate encoder ratio and set (aE)

Do this if the encoder is on the motor shaft, or if you know that the
motor and encoder are coupled so that they turn at exactly the same
speed. Otherwise skip to the next step, “Automatically compute en-
coder ratio and set (aE).”

NOTES

▪ If the encoder ratio is changed from its default of 1000, the al-
lowed maximum position will be decreased from +2^31 by the

 Using encoders

 Page 61 of 107

same ratio as the change. The count will roll over from positive
to negative range when this limit is exceeded.

▪ Once the encoder ratio has been set, the units of the move and
velocity commands change from microsteps to microstep-
equivalent encoder counts/second.

Procedure:

1. Move the motor to zero (starting) position. Typically this is the
home position.

2. Calculate the encoder ratio:

Encoder ratio = (motor microsteps per rev/quadrature encoder
counts per rev) X 1000.

For example, a motor with 200 steps/rev operating on the
EZ4AXIS17XR, in 1/16 microstep mode, would have 200 X
16 = 3200 microsteps/rev.

A 400-line quadrature encoder would have 400 X 4 = 1600 en-
coder counts per rev.

So, (3200/1600) X 1000 = 2000 for the encoder ratio, if the en-
coder is mounted on the motor shaft.

3. Issue the encoder ratio command aE with the calculated ratio,
e.g., in the preceding example, /1aM2aE2000R Axis 2.

NOTE: Preferably, the calculated ratio will be a whole number.
If it is not, use the nearest whole number. Later, the aC value
will need to be adjusted as discussed below.

4. Confirm the calculated encoder ratio by running the next step
and comparing it with the automatically computed encoder ratio.
Afterwards it will be necessary to re-enter the ratio using the aE
command.

3. Automatically compute encoder ratio and set (aE)

Use this method when the encoder is not placed on the motor shaft
and the movement ratio of the shaft to the encoder is unknown. Also
use it to confirm an encoder ratio that you have calculated, as above.

NOTE: If the encoder ratio is changed from its default of 1000, the
allowed maximum position will be decreased from +2^31 by the
same ratio as the change. The count will roll over from positive to
negative range when this limit is exceeded.

Procedure:

1. Issue the n0 command to the axis. This clears any special modes,
e.g., /1aM2n0R.

2. Move the motor to zero (starting) position. Typically this is the
home position.

3. Issue the z0 command to the axis. This zeroes both the motor and
the encoder positions.

Using encoders

Page 62 of 107

4. Move the motor 100,000 microsteps by issuing the command
A100000 to the axis. Confirm that the move completes at a ve-
locity that does not stall.

5. If the motor stalls, the velocity will probably need to be reduced
using the V command. The current programmed velocity can be
read by issuing ?2 to the axis.

6. Issue the command ?0 to the axis, which reads back the current
position of the motor. If it has not stalled, the number will be
100000.

7. Issue the command ?8 to the axis, which reads back the encoder
position (count).

8. Issue the command aE0 to the axis, which divides these two
numbers to arrive at the encoder ratio.

9. Issue the command ?aE to the axis, which reads back the com-
puted encoder ratio.

10. The value read back is not the precise ratio, but is a very close
approximation with an error of a few counts. The actual ratio
will be apparent to someone familiar with typical encoder ratios
(for example, if the number is read back value is 2557, the actual
ratio would be 2560). Use the actual ratio in the next step.

11. Or, if using this procedure to confirm a ratio calculated in the
preceding instructions, compare readback with calculated value;
they should be approximately the same.

12. Issue the command aE with the actual ratio to the axis, e.g.,
/1aM2aE2560R from the example above. This overwrites the au-
tomatically computed ratio set with the aE0 command.

NOTE: Overwriting is a crucial step in preventing accumulative er-
ror and "shuffling" that would result as the error was repeatedly cor-
rected.

4. Optional: set correction deadband (aC)

This value represents the error in quadrature encoder counts allowed
before a correction is issued. Default is 50.

▪ Recommend leaving at default unless operation requires
changing. Refer to “Troubleshooting” on page 63 and the
“Functional description,” above.

▪ If calculated ratio is not an even number, set aC to cover at least
the difference between the calculated ratio and nearest full num-
ber.

▪ Example: /1aM2aC75R

5. Optional: Set the Overload Timeout Value (au)

This is the number of retries allowed under a stall condition. Once
this number is reached and the motor remains stalled, the motor is in
an overload state and will turn off encoder feedback. Default is 10.

Example: /1aM2au10000R

 Using encoders

 Page 63 of 107

6. Enable the position correction mode (n8)

1. Zero positions just prior to enabling position correction mode by
issuing the z0 command to the axis, with the motor in the zero
position (typically home).

Example: /1aM2z0R

2. Enable position correction mode by issuing the n8 command to
the axis, e.g., /1aM2n8R

Example of full command string:

/1aM2z0aC50h40m40au100aE2000L100n8R

This command string starts the position correction mode on Axis
2 on Drive 1 and sets parameters discussed above including, in
addition, hold current, move current, and acceleration (h, m, and
L).

Remember that the motor should be moved to its zero position
(typically the home position) before issuing the command string,
because it includes the zero command (z).

To terminate position correction mode

To terminate, issue the following (Axis 2 used for example):

/1aM2n0R Exits current mode.

/1T2 Terminates any commands in process on the axis (Axis 2).

Troubleshooting

• If motor consistently stops during a move:

If a very fine line count encoder is used, such that for example, the
encoder ratio is around 2000, or if the encoder is decoupled from the
motor shaft, or if the encoder ratio is non integer, increase the error
(aC) allowed, for example, set aC to 2000. This way a move that is
in progress will not be halted and restarted because the correction al-
gorithm detects that the position error is too large.

• Typical reasons that the position error is too large:

▪ Incorrect or non integer aE value.

▪ m value (move current) set too low.

▪ L value (acceleration) set too high for torque available from mo-
tor. Use ?L to read back the current acceleration setting for the
axis, e.g., /1?L.

▪ V value (velocity) set too high for torque available from motor.
Use ?aV to read back the current velocity setting for all axes,
e.g., /1?aV (requires v7.50 and higher firmware). Results are
displayed in order of axis numbers, e.g., 1000,50000,1000,10000
lists the velocity settings for axes 1 through 4 respectively.

▪ Physical obstruction or excessive friction

▪ Inadequate voltage from power source

Using encoders

Page 64 of 107

Auto recovery in position correction mode (n512, n1024, n1536)

NOTE: This function is not implemented yet

Overview

In the Position Correction mode, an error message (upper or lower case I
—Error 9) is issued if a stalled motor cannot be corrected within the
number of retries set by the au command. This message indicates an
overload status, and can be used by an external computer to execute a
recovery script. For information regarding status messages, see
“Appendix 4, Device Response Packet,” page 90.

However, it may be desired that the drive recover by itself in the case of
a stand-alone application. The n512, n1024, and n1536 auto recovery
modes allow the EZ4AXIS to execute stored recovery scripts when an
overload is detected.

These scripts, provided by the user, are stored in EEPROM locations 13,
14, and/or 15. In addition, a last-resort script is stored in location 12.

Depending on which auto recovery mode is selected, the drive will
execute stored program 13, 14, or 15 when an overload is detected. The
number of times the recovery script can run is set by the u command (see
below). If the selected recovery script cannot auto recover within the
number of retries specified by the u command, program 12 is run.

An overload error on any motor, if position correction is enabled, will
execute error recovery.

Commands

n512 Enters Auto Recovery mode and designates the program stored
in location 13 as the recovery script.

n1024 Enters Auto Recovery mode and designates the program stored
in location 14 as the recovery script.

n1536 Enters Auto Recovery mode and designates the program stored
in location 15 as the recovery script.

 When issuing the commands above, it is necessary to combine
them with the position correction mode command n8. For
example, n512+n8 = n520, n1024 + n8 = n1032, or n1536 +n8 =
n1544. This includes position correction with auto recovery.
Otherwise position correction will be disabled when auto
recovery is enabled.

u Sets number of times the recovery script may run before
executing the last-resort recovery script stored in location 12 ,
e.g., u5 = 5 times.

Example: /1aM2u5n1032R. This sets up auto recovery on Drive 1 Axis
2, using Program 14 for the initial recovery script (n1032, which
combines n1024 with n8) to run up to 5 times (u5).

 Using encoders

 Page 65 of 107

The user will need to provide the recovery scripts and store them in
program locations 13, 14, and/or 15, and 12.

Example (exercise)

(Axis 2 is used in the example command string):

1. Enter /1s13p1202R. This stores an error recovery script in memory
location 13 that simply sends the number 1202 to the bus, each time
the recovery script is run.

2. Enter /1s12p1201R. This stores a recovery script in memory location
12, which simply sends the number 1201 to the bus. This is the final
“last resort” script.

3. Move the motor to its starting position (usually the home position).

4. Enter /1aM2m5h5z0aC50au5u3aE2000L100n520R.

This does the following:

m5 and h5 Sets move current and hold current low so the motor can
be stalled easily.

z0 Zeroes encoder and motor position counter with the z0
command.

aC50 Sets correction deadband at 50 encoder counts.

au5 Sets retries allowed via encoder feedback to a maximum
of 5.

u3 Specifies that recovery script is run a maximum of three
times.

aE2000 Sets encoder ratio to 2000 (encoder ratio setup is de-
scribed in “Calculate encoder ratio and set (aE)” on page
60.

n520 Enters position correction mode and specifies that stored
program 13 will be executed on overload error condi-
tion. n = 520 = n8 + n512.

5. Now manually move the motor shaft so that the drive tries to correct
five times and then gives up.

After the fifth retry, the overload error will be issued and the drive
will execute stored program 13 up to three times, sending the number
1202 to the bus each time. If the motor is manually held so that it
remains stalled, the number 1202 will be sent 3 times followed by
the number 1201 as the final recovery script, stored program 12, is
run.

Using encoders

Page 66 of 107

Encoder Overload Report mode (n16) –not implemented yet

In position correction mode (n8), the drive will automatically correct any
stalled moves up to the limit given by “au.” Only then will it report Error
9, the overload error indication.

However, it may be desirable to detect a stall but not correct it. The
Overload Report Mode does just this. The encoder value is continuously
compared against the commanded position and Error 9 is set when these
do not match to within the error band specified by the aC command
(default 50 encoder counts). When this error occurs, the axis will exit
from any loops or multiple command strings it may be executing.

This mode requires the encoder ratio to be entered correctly via the aE
command. Enter encoder ratio and zero the encoder and motor position
counter prior to issuing the n16 command (see instructions below).

Overload Report mode commands

z0 Zero encoder and motor together. First move motor to zero
position (typically home).

aE Encoder ratio. Set according to instructions in “Calculate
encoder ratio and set (aE)” on page 60.

aC Specifies correction deadband. Default is 50.

n16 Enters overload report mode.

 Example command string:

/1aM2z0aE2000n16R—This sets up Overload Report Mode on Axis 2 on
Drive 1. Before issuing this command string, send the motor to the zero
position (typically home).

Setting arbitrary measurement units via the aE command

It may be desired to use inches, for example, as measuring units in a
particular setup that controls the depth of a drilling apparatus.

If the motor movement vs. drill depth is known, this information can be
used to set the encoder ratio to a value that allows movement in units that
reflect the desired precision, e.g., thousandths of an inch.

It is not necessary to use position correction mode (n8) or even have an
encoder, in order to set the encoder ratio /1aE32000R etc. Setting the
encoder ratio thus allows positioning in any units of the user’s choice.

 Appendix 1. Addressing methods reference

 Page 67 of 107

Appendix 1. Addressing methods reference

Addressing individual drive cards

NOTE: The following addresses correspond to the settings of the ad-
dress switches on the individual drive cards (Not to be confused with dif-
ferent axes on the same card).

Addressing drives 1-9

Use /1, /2, etc. with address switch on board set accordingly.

Addressing drives 10-16

Use the ASCII characters on a standard keyboard:

Bus address Type this: Set address switch to:

10 /: (colon) A

11 /; (semi colon) B

12 /< (less than) C

13 /= (equals) D

14 /> (greater than) E

15 /? (question mark) F

16 /@ 0 (zero)

(So these addresses 1 to 16 map to hex 30 to hex 3F on the ASCII chart)

Addressing one axis (motor) within a single drive card

NOTE: If no axis is selected, any command issued is addressed to the
default axis. Any multi-axis command will reset the default axis to Axis
1. Otherwise the default axis is the last axis addressed in a command.

NOTE: Use the aM command to address the axes, aM1 through aM4 for
axes 1 through 4.

Select axis and issue command at the same time

Example: /1aM1A1000A0R for Axis 1 (aM1)

Appendix 1. Addressing methods reference

Page 68 of 107

Pre-select axis and send commands subsequently

Once the axis is selected, subsequent single-axis commands and queries
are directed to that axis until another axis is selected or a multi-axis
command is issued.

Example:

/1aM4R Selects Axis 4, then:

/1A1000R Moves Axis 4 to absolute position 1000

/1?0 Retrieves Axis 4 position

/1L10R Sets Axis 4 acceleration

Addressing multiple axes on a drive card simultaneously

This function is available with multi-axis and interpolation commands.
Please refer to “Send commands to multiple axes (multi-axis
commands)” on page 16 and “Drawing circles and lines” on page 99
(Appendix 9).

 Appendix 1. Addressing methods reference

 Page 69 of 107

Addressing banks of drive cards

Up to 16 drive cards can be addressed in banks of 2, 4, or “all,”
increasing versatility and ease of programming. These are physically
separate cards, not to be confused with different motors on the same
drive.

Addressing banks of two drives

Drives 1 and 2 /A

Drives 3 and 4 /C

Drives 5 and 6 /E

Drives 7 and 8 /G

Drives 9 and 10 /I

Drives 11 and 12 /K

Drives 13 and 14 /M

Drives 15 and 16 /O

Addressing banks of four drives

Drives 1, 2, 3, and 4: /Q

Drives 5, 6, 7, and 8: /U

Drives 9, 10, 11, and 12: /Y

Drives 13, 14, 15 and 16: /] (close square bracket)

Addressing all drive cards at once

Use the global address /_ (underscore) to select all drives. To address all
axes on the drives, insert the command four times separated by commas.

To select all drives on bus: /_

Appendix 2. Command set reference

Page 70 of 107

Appendix 2. Command set reference

Introduction

The following table lists the commands available for the EZ4AXIS at the
time of publication. It indicates the command, possible operands, and
brief descriptions with examples.

NOTE: The EZ4AXIS is always in 1/16th step mode, meaning that there
are always 16 microsteps per step.

Command list

Table 1. Command Set

Command
(case sensi-

tive)

Operand/
(default)

Description

AXIS SELECTION

aM

1, 2, 3, or
4

(1)

Designate target axis for command.

/1aM1R selects Axis 1. From then on, all commands
are sent to Axis 1.

/1aM2R selects Axis 2, and so on.

As part of a complete move command:

e.g., /1aM2A1000R. Move Axis 2 to absolute position
1000.

POSITIONING

A 0-2^31

Move motor to absolute position.

(microsteps or quadrature encoder counts, 32-bit posi-
tioning).

E.g. /1aM3A10000R (Axis 3 specified)

Or Multi Axis /1A1000,2000,3000,1234R

P 0-2^31

Move motor relative in positive direction.

(microsteps or quadrature encoder counts)

E.g. /1aM2P10000R (Axis 2 specified)

A value of zero will cause an endless forward move at
speed V. (i.e., enters into velocity mode) The velocity
can then be changed on the fly by using the V com-
mand.

Endless moves can be terminated by issuing a T
command or by a falling edge on the Switch 2 Input.
See T command.

Or Multi Axis /1P1000,2000,3000,1234R

 Appendix 2. Command set reference

 Page 71 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

D 0-2^31

Move motor relative in negative direction.

(microsteps or quadrature encoder counts)

E.g. /1aM2D10000R (Axis 2 specified)

A value of zero for the operand will cause an endless
backwards move at speed V. (i.e. enter into Velocity
Mode). The velocity can then be changed on the fly by
using the V command.

Endless moves can be terminated by issuing a T
command or by a switch if “kill move” is enabled

Or Multi Axis /1D1000,2000,3000,1234R

Or Multi Axis /1D1000,,,1234R to move axes 1,4

F 0 or 1

Set direction of rotation considered positive to
default or specified axis.

E.g. /1F1R or /1aM2F1 with axis (Axis 2) specified

Only do this once on power up, do not use with en-
coder feedback). Swapping motor wires also works.

Or Multi Axis /1F1,1,0,1R

j
1 or 2 or
16 or 32

Set Microstep resolution EZ4AXIS17XR

E.g. /1j16R will set the microstep resolution to be
1/16

th
 microstep. Note that All motion units are in

microsteps

Note EZQuadHRStepper allows j64, j128 and j256 in
addition

j
1,2,4,8,16,
32,64,128,2

56

Set Microstep resolution EZQuadHRStepper

 Note EZQuadHRStepper has 256 microstep as de-
fault on power up

r NA

Set current position to be same as encoder posi-
tion.

E.g. /1aM2rR (Axis 2 specified)

INTERPOLATION COMMANDS (Axes 1, 2 and separately Axes3,4)

aaA 0–90000
Set diameter of circle. (circular interpolation)

Units are micro6steps. - Not Implemented yet

aaI 0-1024

Set beginning phase of circle (circular interpola-
tion). - Not Implemented yet

Units are such that 360 degrees = 1024.

aaW 1-20000

Set speed at which circle is drawn (circular inter-
polation). - Not Implemented yet

Units are microsteps/second.

aaC 1-1024

Specifies how much of a circle is drawn and initi-
ates circle drawing process (circular interpolation).

Units are such that 100% = 1024 = 360°.

Note: aaC2048 will draw two circles on top of one an-
other. - Not Implemented yet

Appendix 2. Command set reference

Page 72 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

an65536 NA

Places axes 1 and 2 and separately axes 3 and 4
interpolation mode.

This mode draws straight lines.

In this mode, the speed of the faster axis is slowed
such that both axes arrive at the destination at the
same time.

You may issue a multi-axis command addressed to all
four axes to enter linear interpolation mode. In such a
case Axes 1 and 2 will move in interpolation fashion,
and separately Axes 3 and 4 can move in a linear
interpolated fashion. 1an65536,65536,0,0R sets Axes
1 and 2 into linear interpolation mode for drawing
straight lines. /1an0,0,65536,65536R sets Axes 3
and4 into linear interpolation mode for drawing straight
lines. /1an65536,65536,65536,65536R sets Axes 1
and 2 into linear interpolation mode and separately
sets axes 3 and 4 into interpolation mode

HOMING

f
0 or 1

(0)

Set Home Flag and Limit polarity,

Sets polarity of limits/home sensor.

Each axis has own set of limit/home flags; these are
on the 6-pin connectors. The polarity of each lim-
it/home flag can be changed individually.

 E.g. /1aM3f1R sets Axis 3 limit/home flag polarity to 1.

1=high (normally closed) 0=low (normally open)

Z

(upper case)

0-(2^31)

(400)

Home/initialize motor.

Initializes motor to known position. When issued, mo-
tor will turn toward 0 until the home sensor is interrupt-
ed. If already interrupted, motor will back out from in-
terrupted position and come back in until re-
interrupted. This sets motor position to zero.

Includes number of microsteps allowed before reach-
ing home position.

E.g. /1aM3 Z300000R (Axis 3 specified, 300000
microsteps allowed)

z0

(lower case)
--

1. When used with encoder: z0 zeroes motor with
encoder at current position.

2. In voltage positioning (potentiometer position-
ing), voltage-velocity (joystick), and position cor-
rection modes: sets zero point to current motor
position.

E.g., /1aM2z0R sets zero point to current motor posi-
tion. Absolute positions are computed in reference to
this point.

 Appendix 2. Command set reference

 Page 73 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

SET VELOCITY

V

1-59900

(568)

Set max/slew speed (velocity) of default or select-
ed motor. (positioning mode)

Sets microsteps per second. Max V is 59900.

NOTE: The EZ4AXIS is always in 1/16
th
 step mode.

E.g. /1aM2V10000R sets max. velocity of Axis 2
motor. Or send /1V1000,1000,1000,1000R

NOTE: If the encoder ratio (aE command) has been
set, the units of velocity change to encoder
counts/second.

v
0-900

(0)

Set start velocity for selected motor.

Units are microsteps/second.

Only or applications where it is desired to have motor
accelerate suddenly from zero to a specific velocity.
Else do not use, causes jerky motion.

E.g. /1aM2v100R sets start velocity of Axis 2 motor to
100 microsteps/second.

c
0-900

(0)

Set stop velocity for selected motor.

Units are microsteps/second. Note set c<v

Only for applications where it is desired to have motor
stop suddenly from a specified velocity rather than
follow the more sloping deceleration curve.

Else do not use, causes jerky motion.

E.g. /1aM2c400R sets stop velocity of Axis 2 motor to
400 microsteps/second.

SET ACCELERATION

L
0-64999

(10)

Set acceleration factor.

Acceleration (in microsteps / sec^2) = (L value) x
(100,000,000/65536).

For example, if V=10000 microsteps/sec and L=1, it
will require 6.55 seconds to reach final velocity. V =
(LValue) *(100,000,000/65536) * Time)

NOTE: Acceleration does not scale with encoder ratio.

E.g., /1aM21LR (Axis 2 specified)

LOOPING AND BRANCHING

g NA

Beginning of loop marker.
E.g. /1aM2gP10000M1000G10R. (Axis 2 specified)

This loop begins with the P command following the g
marker. It continues until the G marker (described be-
low).

Appendix 2. Command set reference

Page 74 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

G 0-30000

End of loop marker and repeat designator.

G marks the end of a loop. The operand following the
G specifies how many times to repeat the loop. A val-
ue of 0 causes the loop to repeat until terminated.
(Requires T command to terminate). If no value is
specified, 0 is assumed.

E.g. /1aM2gP10000M1000G10R. This loop repeats 10
times (shows Axis 2 specified).

NOTE: Loops can be nested up to 4 levels.

E.g. /1aM2gA1000A10000gA1000A10000G10G100R
is an example of a two-level nested loop.

 Appendix 2. Command set reference

 Page 75 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

H 101-414

Halt current command string and wait until input
or limit switch condition specified.

101wait for low on Axis 1 ADC1

111wait for high on Axis 1 ADC1

102wait for low on Axis 1 ADC2

112wait for high on Axis 1 ADC2

103wait for low on Axis 1 limit 1 (lower)

113wait for high on Axis 1 limit 1 (lower)

104wait for low on Axis 1 limit 2 (upper)

114wait for high on Axis 1 limit 2 (upper)

201wait for low on Axis 1 ADC1

211wait for high on Axis 1 ADC1

202wait for low on Axis 1 ADC2

212wait for high on Axis 1 ADC2

203wait for low on Axis 1 limit 1 (lower)

213wait for high on Axis 1 limit 1 (lower)

204wait for low on Axis 1 limit 2 (upper)

214wait for high on Axis 1 limit 2 (upper)

301wait for low on Axis 1 ADC1

311wait for high on Axis 1 ADC1

302wait for low on Axis 1 ADC2

312wait for high on Axis 1 ADC2

303wait for low on Axis 1 limit 1 (lower)

313wait for high on Axis 1 limit 1 (lower)

304wait for low on Axis 1 limit 2 (upper)

314wait for high on Axis 1 limit 2 (upper)

401wait for low on Axis 1 ADC1

411wait for high on Axis 1 ADC1

402wait for low on Axis 1 ADC2

412wait for high on Axis 1 ADC2

403wait for low on Axis 1 limit 1 (lower)

413wait for high on Axis 1 limit 1 (lower)

404wait for low on Axis 1 limit 2 (upper)

414wait for high on Axis 1 limit 2 (upper)

E.g. /1gH202P10000G20R. Does the loop when Axis 2
Input 2 is low. Also H202H212 will look for an edge.

If halted, operation can also be resumed with the R
command, e.g., /1R.

Appendix 2. Command set reference

Page 76 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

S 101-414

Skip next instruction depending on input status.

101wait for low on Axis 1 ADC1

111wait for high on Axis 1 ADC1

102wait for low on Axis 1 ADC2

112wait for high on Axis 1 ADC2

103wait for low on Axis 1 limit 1 (lower)

113wait for high on Axis 1 limit 1 (lower)

104wait for low on Axis 1 limit 2 (upper)

114wait for high on Axis 1 limit 2 (upper)

201wait for low on Axis 1 ADC1

211wait for high on Axis 1 ADC1

202wait for low on Axis 1 ADC2

212wait for high on Axis 1 ADC2

203wait for low on Axis 1 limit 1 (lower)

213wait for high on Axis 1 limit 1 (lower)

204wait for low on Axis 1 limit 2 (upper)

214wait for high on Axis 1 limit 2 (upper)

301wait for low on Axis 1 ADC1

311wait for high on Axis 1 ADC1

302wait for low on Axis 1 ADC2

312wait for high on Axis 1 ADC2

303wait for low on Axis 1 limit 1 (lower)

313wait for high on Axis 1 limit 1 (lower)

304wait for low on Axis 1 limit 2 (upper)

314wait for high on Axis 1 limit 2 (upper)

401wait for low on Axis 1 ADC1

411wait for high on Axis 1 ADC1

402wait for low on Axis 1 ADC2

412wait for high on Axis 1 ADC2

403wait for low on Axis 1 limit 1 (lower)

413wait for high on Axis 1 limit 1 (lower)

404wait for low on Axis 1 limit 2 (upper)

414wait for high on Axis 1 limit 2 (upper)

E.g. /1gS202P10000GR. Only does the P10000 when
Axis 2 Input 2 is high.

 Appendix 2. Command set reference

 Page 77 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

PROGRAM STORAGE AND RECALL

e 0-15

Executes program stored in specified EEPROM
location 0-63.

E.g. /1e1R executes stored program 1 (the program
stored in EEPROM location 1).

s 0-15

Stores a program to specified EEPROM location 0-
63.

E.g. /1s1A10000A0R stores command string to loca-
tion 1.

This command takes approx 1 second to write to
EEPROM.

NOTES:

25 full commands max. per string, 256 characters.

Program 0 is executed on power-up.

If no command string is included, content of memory
location is erased, eg /1s14R erases program 14

PROGRAM EXECUTION

R NA

Run the command string that is currently in the
execution buffer of the default or selected motor.

E.g. /1R or /1aM2R (Axis 2 specified)

Can be used to resume operation after a halt (H) or
termination (T). Resume causes the last command
issued to be run.

SET MAX MOVE / HOLD CURRENT

h
0-50

(10)

Sets hold current within a scale of 0 to 50% of max
current.

100% = 0.5A

E.g. /1aM2h15R = 15% (Axis 2 specified).

Applies to specified axis.

m

0-100

(25)

Set max move current within a scale of 0 to 100%
of max current.

100% = 0.5A

E.g. /1aM2m40R = 40% (Axis 2 specified)

Applies to specified axis.

av 152588

The 265 micro-step mode drive has two modes of cur-
rent control, at a speed below that set by av , the con-
trol mode emphasizes accuracy and smoothness. At a
speed above the velocity set by av the drive will work
in a mode to maximize torque at high speed . The high
speed mode will be slightly noisier on some motors.
/1av100000R etc

Appendix 2. Command set reference

Page 78 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

N MODE COMMANDS

N

1-3

(1)

Initiates designated mode determined by operand.

1 = Encoder with no index or no encoder (default).
Homes to opto or switch.

2 = Encoder with index. Homes to index.

3 = Uses potentiometer as an encoder on specified
axis.

E.g., /1aM1N3

Applies to specific axis.

 Appendix 2. Command set reference

 Page 79 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

n MODE COMMANDS

n
0-128000

(0)

Initiates designated mode determined by operand.

Bit0 (LSB) - /1n1R – Not implemented yet

Bit1 - /1aM1n2R Enable limits on an axis-by-axis ba-
sis. Limits are enabled for Axis 1 in this example. The
polarity of the limits is set by the f command.

Bit2 - /1n4R – Not implemented yet

Bit3 - /1n8R enables Encoder Position Correction
mode, with the two encoder (AB) inputs being used for
feedback.

Bit4 - /1n16R Enables Encoder Overload Report
mode.

Bit5 - /1n32R – Enable Encoder AB mode or Step and
Dir mode for auxiliary encoders 5 and 6.

 Bit8 - /1n64R Enable Encoder following mode for aux-
iliary encoders 5 and 6. Also use in combination with
n32 mode eg n96 will follow a step and dir input.

Bit7 - /1n128R – Not implemented yet

Bit8 - /1n256R – Not implemented yet

Bit9 and Bit10 - These bits will execute one of the
stored recovery script programs 13, 14 or 15 whenever
the position correction feedback shuts down the drive
due to an overload. (That is, the number of retries
specified by the au command has been exhausted.
See Position Correction Commands in this table.) Ax-
es 1 and 2 only. Position Correction must run concur-
rently. (Requires firmware version 6.997 or higher.)

/1n512R will execute recovery program 13.

/1n1024R will execute recovery program 14.

/1n1536R will execute recovery program 15.

Bit11 - /1n2048R – Not implemented yet

Bit12 - /1n4096R – Not implemented yet

Bit13 - /1n8192R – Not implemented yet

Bit14 - Reserved

Bit15 - Reserved

Bit16 - /1n65536R Enables joystick (voltage-velocity)
mode, in which a potentiometer or other varying volt-
age between 0 and 3.3V can be used to control the
velocity of Axis 1.

NOTE: Any n mode change may require up to
20mS to propagate through the firmware. If modes
are being dynamically changed a small wait com-
mand such as M20 may be required before a move
command that follows it.

Appendix 2. Command set reference

Page 80 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

an MODE COMMANDS

an 0 or 65536

Places axes 1,2 into linear interpolation mode
and/or place axes 3,4 into linear interpolation
mode.

Bit0 (LSB) – Not implemented yet

Bit1 - /1aM1n2R Enable limits on an axis-by-axis ba-
sis. Limits are enabled for Axis 1 in this example. The
polarity of the limits is set by the f command.

Bit2 - /1n4R – Not implemented yet

Bit3 - /1n8R enables Encoder Position Correction
mode, with the two encoder (AB) inputs being used for
feedback.

Bit4 - /1n16R Enables Encoder Overload Report
mode.

Bit5 - /1n32R – Not implemented yet

Bit6 - /1n64R Enable Encoder Following mode. Axes 1
and 2 only.

Bit7 - /1n128R – Not implemented yet

Bit8 - /1n256R – Not implemented yet

This mode draws straight lines.

In this mode, the speed of the faster axis is slowed
such that both axes arrive at the destination at the
same time. E.g.,
/1an65536,65536,0,0A1000,2000,100,100R
/1an65536,65536,65536,65536A1000,2000,100,100R

/1an0,0,65536,65536A100,200,1000,2000R

POSITION CORRECTION COMMANDS – Not Impemented yet

aC
1-64999

(50)

Set position correction value (deadband).

When in position correction mode, sets distance (in
quadrature encoder counts) from commanded position
allowed before the drive corrects using encoder feed-
back.
E.g. /1aM2aC100R (Axis 2 specified)

aE
1000-10^6

(1000)

Set encoder ratio.

This sets the ratio between the encoder counts/rev
and the microsteps/rev for the specified motor. E.g.
/1aM2aE12500R (Axis 2 specified)

Encoder ratio = (motor microsteps per rev/quadrature
encoder counts per rev) X 1000.

au
1-64999

(10)

Set overload timeout. This sets the number of times
the move is retried in case a move stalls. E.g.
/1aM2au10000R (Axis 2 specified)

 When the au retries are exhausted, the drive will drop
out of position correction mode (n8) and report Error 9
(overload).

Also see the auto recovery n mode commands n512,
n1024, and n1536R.

 Appendix 2. Command set reference

 Page 81 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

u
1-64999

(0)

Sets the number of times error recovery scripts 13,
14, or 15 are run prior to calling upon final recov-
ery script 12.

(Requires firmware version V6.99 or higher.)

Also see the auto recovery n mode commands n512,
n1024, and n1536R.

POWER DRIVER CONTROL

J

0-15

(0)

Turn driver On/Off

Digits following the J command are interpreted
as 4-bit binary equivalents: 1111 binary = 15
decimal = all drivers on

/1gJ15,15,15,15J0,0,0,0GR will toggle all out-
puts on and off

/1gJ1,0,0,0J0,0,0,0GR will toggle output 1 on
axis 1 on and off
tection.

ak

aak
250-511

Changes driver outputs to PWM and sets PWM
duty cycle.- Not Implemented yet

ak sets Driver #1; aak sets Driver #2

e.g., /1ak381R or /1aak381R

Where 250=full off (0%) and 511=full on (100%).

POTENTIOMETER POSITION COMMANDS

These commands apply to the Potentiometer Positioning mode (n8192). Not Implemented

ad
0-16368

(50)

Sets a deadband (in microsteps) around the poten-
tiometer value used for the last move.

This deadband must be exceeded before a new move
command is issued. The deadband is defined in terms
of the reading from the potentiometer after A/D con-
version, a number ranging from 0–16368 which repre-
sents 0–3.3V.

E.g. /1aM2ad100R (Axis 2 specified)

am
0-20000

(256)

Set A/D multiplier.

The potentiometer output value is multiplied by this
value and divided by 256 to get the preliminary com-
manded position.
E.g. /1aM2am512R (Axis 2 specified).

ao
0-20000

(0)

Specify positioning offset.

After multiplication by the am value, this offset is add-
ed to obtain the final commanded position.

E.g. /1aM2ao1228R (Axis 2 specified)

MISCELLANEOUS COMMANDS

aP
0-30000

(5)

Response delay (Available in V6.79+)

Units are milliseconds.

This command sets the delay from the drive receiving
the command to the response being sent out. E.g.
/1aP1000R sets the delay to 1000 milliseconds.

Appendix 2. Command set reference

Page 82 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

ap 0-15

Not implemented

Inverts polarity of inputs on 8-pin connector as
seen by ?4, S, and H commands. (Available in firm-
ware version 7.60G4+)

Example: /1ap3R will invert the polarity of inputs 1 and
2. Value is decimal number seen as combination of 4
binary bits.

b

9600

19200

38400

to 230400

(9600)

Adjust baud rate

E.g. /1b19200R

This command will usually be stored as program zero
and executes on power-up. Default baud rate is 9600.

NOTE: correct termination and strict daisy chaining
required for reliable operation at higher baud rates.

K
0-64999

(0)

Set backlash compensation.

Units are number of steps.

For when a non-zero value of K is specified, the drive
will always approach the final position from a direction
going more negative. If going more positive, the drive
will overshoot by an amount K and then go back. By
always approaching from the same direction, the posi-
tioning will be more repeatable.

M 0-29999
Wait for specified period.

Units are milliseconds.

p

(lower case)
0-64999

Ping Command

Sends a numeric message back to the host, when that
point in the command string is reached.

E.g. /1aM2gA1000p3333A0G0R (Axis 2 specified).

Will send the number 3333 every time through the
loop. Example: /0@3333ÿ/0@3333ÿ/0@3333 No Error

Note: Care must be taken when using this command
because it can tie up the 485 bus.

ANALOG INPUT (ADC) COMMANDS

The Analog/Digital IO and Limit/Home inputs are all ADC.

 Appendix 2. Command set reference

 Page 83 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

/1at

X100000 to
X165535

X200000 to
X265535

 Where X =1
-4 depend-
ing on axis

Sets thresholds for “one” and “zero” on each IO
connector

 The number consists of the input number followed by
a 5-digit number ranging from 00000-65535, which
represents the threshold on a scale from 0-3.3V. The
default value is 24200 (1.22V) for all four inputs.

Note: threshold value= (threshold voltage/3.3) x 65535

Changing the threshold allows the H (Halt) and S
(Skip) commands to work on a variable analog input
value which essentially allows the program to act upon
an analog level. This can be used, for example, to
regulate pressure to a given level by turning a motor
on/off at a given voltage.

IO connector thresholds can be read back with the ?at
command. See the ?at command for details.

Setting Limit/Home Connector thresholds

Simply add the axis number and a specific limit to the
beginning of the command described above. For ex-
ample, to set Axis 4 upper limit to 10000, issue
/1at4210000R (note seven numerical digits). The nu-
meral 4 specifies Axis 4, and the numeral 2 specifies
the upper limit.

Note that on the Limit/Home connectors, Input 1 is the
lower limit/home input, and Input 2 is the upper limit.

ADc input thresholds can be read back with the ?aat
command. See the ?aat command for details.

IMMEDIATE QUERIES / COMMANDS

The following are “Immediate” queries and commands, which can execute while other com-
mands are running, allowing on-the-fly programming.

• These commands cannot be cascaded in strings or stored.

• These commands must each be sent individually, and separate from axis selection
commands. (Note axis selection must be issued separately prior to query /1aM2R<CR>
then /1?2<CR> etc)

• These commands do not require an “R” at the end.

• In later versions of firmware it will be possible to query some parameters by using the
same letter that set the parameter. E.g., /1?A returns current position; /1?2 returns slew
speed and /1?V returns instantaneous velocity of a moving motor.

• Some other commands may be executed as immediate commands.

Appendix 2. Command set reference

Page 84 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

$

Reports the command string currently executing,
or most recently executed on drive.

E.g., /1$

Example response:
P1000P1200P1300P1400 No Error

Note: The $ command may not be able to read very
long command strings. On older firmware, attempting
to read very long command strings may kill board op-
eration. If this happens, power cycle the board.

&

Reports the current firmware revision number and
date.

E.g., /1&

Example response:
EZController AllMotion V7.50h5 12-18-12 No Error

?0

(?zero)

Reports the current commanded position for last
commanded axis.

E.g. /1aM2R /1?0 (e.g., for Axis 2)

Example response: 10000 No Error

/1?A

/1?aA

Reports positions of all four

E.g., /1?A or /1/aA

Example response (Axes 1 through 4 in order):
102000,35000,35000,5000 No Error

/1?0

(?zero)

Reports the current commanded position for last
commanded axis.

E.g. /1aM2?0 (e.g., for Axis 2)

Example response: 10000 No Error

?aV

Reports programmed velocities of all four motors
(requires V7.50 or higher firmware).

E.g., /1?aV

Example response: 568,568,568,568 No Error

?1
Reports start speed for default or selected motor.

E.g., /1aM2R /1?1 (Axis 2 specified)

?2

Reports the current Slew/Max speed for Position
mode for default or selected motor.

E.g., /1aM2R /1?2 (Axis 2 specified)

/1?41

/1?42

/1?43

/1?44

Digital Input Query. Reports the high/low status of
all four Digital/Analog IO inputs

E.g., /1?4

0-15 represents a 4-bit binary pattern:

Bit 0 = Switch1 (input 1) (Thresholded Analog Input 1)

Bit 1 = Switch 2 (Input 2) (Thresholded Analog Input 2)

Bit 2 = Opto 1 (input 3) (Home / LoweLimit Input)

Bit 3 = Opto 2 (Input 4) (Upper Limit Input)

Example: 11 = all high except input 3 (bit 2)

 Appendix 2. Command set reference

 Page 85 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

?8

Reports encoder position for currently selected
motor.

E.g., /1aM1R <enter> then

 /1?8 (Motor/encoder 1 specified)

/1aM2R <enter> then

 /1?8 (Motor/encoder 2 specified)

Example response: 1000

?a8

Reports encoder position all axes.

E.g., /1?a8

Example response: 1000,300,2990,4567

?aa1

?aa2

?aa3

?aa4

1-4

Reports analog values on all 2 Analog Inputs and 2
Analog Drive parameters per axis

E.g. /1?aa1

Example response: 64300,15, 64300, 64300 No Error

Readback order is inputs 4,3,2,1

These numbers represent the voltage range 0-3.3V
available at each input, as expressed by a number
from 00000-65535

?aat

Reports thresholds for all four axes on Limit/Home
connections.

/1?aat

Read thresholds of all ADCs on the four 10 pin
I/O connectors on the drive. The order of
readback (in terms of the axis/input identifiers
explained above) is

LEFT END is1ADC2, Axis1ADC1, Axis2ADC2,
Axis2ADC1, Axi3ADC2, Axis3ADC1, Ax-
is4ADC2, Axis4ADC1. RIGHT END
Example readback:
6144,6144,6144,6144,9999,6144,6144,6144 No
Error.

?aE

Reports encoder ratio for default or selected axis.

e.g., /1aM2R <CR> then /1?aE <CR>(with Axis 2
specified.

 ?h Not Implemented

?m Not Implemented

?L
Reports acceleration for default or selected axis.

e.g., /1aM2R /1?L (Axis 2 specified)

?2

?V

/1?2 Reports programmed velocity (slew rate) for
default or selected axis. /1?V reports instantane-
ous velocity e.g., /1aM2R /1?V (Axis 2 specified)

Appendix 2. Command set reference

Page 86 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

Q

Reports current status of EZ4AXIS board (drive).

E.g., /1Q

Reports the Ready/Busy status as well as any error
conditions in the status byte of the return string.

The return string consists of the start character (/), the
master address (0) and the status byte. Bit 5 of the
status byte is set when the drive is ready to accept
commands. It is cleared when the drive is busy, ie any
axis is moving. The least significant four bits of the
status byte contain the completion code.

List of codes:

0 = No Error

1 = Initialization error

2 = Bad Command

3 = Operand out of range

Errors in opcode will be returned immediately, while
Errors in operand range will be returned only when the
next command is issued. See Appendix 4, Device Re-
sponse Packet, page 90.

General Imme-
diate Query

Syntax

In firmware version 7.02 and above it is possible to
query some parameters by using the same letter that
set the parameter.

E.g. /1?A reports current position; /1?aA reports all 4
motor positions.

T

Terminate current command or loop for an axis.

 /1T1 = terminate Axis 1 /1T3 = terminate Axis 3

 /1T2 = terminate Axis 2 /1T4 = terminate Axis 4

NOTE: Do not use /1T2, /1T3 etc. to terminate a loop
since the behavior is undefined and may change in the
future.

 Appendix 2. Command set reference

 Page 87 of 107

Command
(case sensi-

tive)

Operand/
(default)

Description

Other Immedi-
ate Commands

The following other commands may be issued as im-
mediate (on-the-fly):

A L

D J

V P

These commands can be sent while the motors are
moving and will change the motion “on the fly”.

Typically issue in multi axis format to affect any motor.

Eg /1P1000,,1000,R will change target position of
axes 1 and 3 while moving.

Eg issue

/1A10000,10000,10000,10000R then while running
issue

/1A,,-10000,R reverses motor 3 while moving.

Note that these commands must be issued one at a
time. Ie no multi command strings.

If drive is running a sequence of commands in a loop
then this command will affect the currently running
command instantly, and then the loop will continue, but
with cganged velocity etc in case that was changed.

By using multi axis on the fly commands any motor
can be started at any time, further by using /1T1 /1T2
etc and motor can be stopped at any time.

Other Immedi-
ate Commands

The following other commands may be issued as im-
mediate (on-the-fly) . The drive will adapt to the new
target while running:

A, P, D, V, L

RESPONSE PACKET

See Appendix 4, Device Response Packet

Appendix 2. Command set reference

Page 88 of 107

THIS PAGE INTENTIONALLY LEFT BLANK

 Appendix 3. Step loss detection using opto

 Page 89 of 107

Appendix 3. Step loss detection using opto

For some applications that operate without encoder feedback, it may be
necessary to detect loss of steps due to the mechanism stalling for any
reason.

Step loss is easily detected by following these steps:

1. Home the stepper to the opto using the Z Command.

2. Move out of the flag a little by issuing, for example, an A100 com-
mand.

3. Figure out the exact step on which the flag gets cut by issuing D1
commands followed by ?4 commands to read back the opto. Let’s
call this value Y. (This only needs to be done once during initial set-
up).

4. Execute the move sequence for which step loss detection is needed.

5. Issue a command to go back to absolute position Y+1.

6. Check the opto; it should not be cut (read opto back with the ?4

command).

7. Now issue a command to go to position Y-1.

8. Check the opto; it should be cut (read opto back with the ?4 com-
mand). If the opto was not at the state expected, steps may have been
lost.

Step loss detection can also be done by looking for changes on the other
inputs.

Appendix 4. Device response packet

Page 90 of 107

Appendix 4. Device response packet

Introduction

EZSteppers® and EZServos® respond to commands by sending
messages addressed to the “Master Device.” The master device (which is
typically a PC) is always assumed to have address zero (0). The master
device should parse the communications on the bus continuously for
responses starting with /0. (It should NOT, for example, look for the next
character coming back after issuing a command, because glitches on the
bus when the bus reverses direction can sometimes be interpreted as
characters.)

Response packet structure

After /0, next comes the “Status Character” which consists of 8 bits:

Bit7 Reserved

Bit6 Always set

Bit5 Ready bit. Set when the EZStepper® or EZServo® is ready to
accept a command.

Bit4 Reserved

Bits 3 through 0. These form an error code N from 0-15:

N Function

0 No Error

1 Init Error

2 Bad Command (illegal command was sent)

3 Bad Operand (Out of range operand value)

4 N/A

5 Communications Error (Internal communications error)

6 N/A

7 Not Initialized (Controller was not initialized before at-
tempting a move)

8 N/A

9 Overload Error (Physical system could not keep up with
commanded position)

10 N/A

11 Move Not Allowed

12 N/A

13 N/A

14 N/A

15 Command overflow (unit was already executing a com-
mand when another command was received)

Note that in the RS485 bus, devices must respond right away, after the
master sends a command, before the success or failure of the execution

 Appendix 4. Device response packet

 Page 91 of 107

of the command is known. For this reason, some error messages that
come back are for the previous command. An example of this is “failure
to find home.”

Example initialization error response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An initialization error response has 1 in the lower nibble. So the response
is 41 Hex or 61 Hex which corresponds to ASCII character upper case
“A” or lower case “a,” depending on whether or not the device is busy.

Example invalid command response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex)

An invalid command response has 2 in the lower nibble. So the response
is 42 Hex or 62 Hex, which corresponds to ASCII character upper case
“B” or lower case “b,” depending on whether or not the device is busy.

Example operand out of range response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An operand out of range response has 3 in the lower nibble. So the
response is 43 Hex or 63 Hex, which corresponds to ASCII character
upper case “C” or lower case “c,” depending on whether or not the
device is busy.

Example overload error response

Note that the upper nibble typically only takes on values of 4 or 6 (Hex).

An overload error response has 7 in the lower nibble. So the response is
47 Hex or 67 Hex, which corresponds to ASCII character upper case “I”
or lower case “i,” depending on whether or not the device is busy.

Appendix 4. Device response packet

Page 92 of 107

Example response to command “/1?4”

FFh: RS485 line turn around character. It is transmitted at the begin-
ning of a message.

2Fh: ASCII “/” Start character. The DT (Data Terminal) protocol uses
the ‘/’ for this.

30h: ASCII “0” This is the address of the recipient for the message.

 In this case ASCII zero (30h) represents the master controller.

60h: This is the status character (as explained above).

31h: These two bytes are the actual answer in ASCII.

 This is an eleven which represents the status of the four inputs.

 The inputs form a four-bit value. The weighting of the bits is:

 Bit 0 = Switch 1

 Bit 1 = Switch 2

 Bit 2 = Opto 1

 Bit 3 = Opto 2

03h: This is the ETX, or end-of-text character. It is located at the end
of the answer string.

0Dh: This is the carriage return.

0Ah: This is the line feed.

 Appendix 5. Microstepping primer

 Page 93 of 107

Appendix 5. Microstepping primer

First consider a full stepping driver.

A stepper motor moves by having two windings that are orthogonal to
each other and sequencing the current in these windings.

When full stepping, a typical sequence is:

• A+ (Only winding A current applied in positive direction)

• B+ (Only winding B current applied in positive direction)

• A- (Only winding A current applied in negative direction)

• B- (Only winding B current applied in negative direction)

(A full electrical cycle consists of four steps.)

It can be seen that if the windings are not physically placed orthogonally,
the four steps may not be of equal size, and the difference in motion will
be a constant only if the number of steps is divisible by four, even when
in full step mode.

Now consider microstepping:

Microstepping is achieved by placing two sinusoidally varying currents
that are 90 degrees apart in the windings of the stepper. This causes a
torque vector of equal length to rotate, causing smooth inter-step motion
of the rotor.

However, in order to get even motion in every step it is necessary:

• That the windings be mechanically orthogonal

• That the windings produce equal torques for equal currents

• That there is no other “detent torque” acting upon the rotor in the
absence of current. (This detent torque is easily felt by rotating the
stepper with windings disconnected and not shorted. A motor that is
good for microstepping will feel smooth when rotated by hand—
somewhat like a DC motor—with little tendency to detent.)

• That the current not be so small that the driver cannot regulate it to
the microstepping accuracy desired

In general, most inexpensive stepper motors cannot microstep with
accuracy. Typically, a motor designed especially for microstepping must
be run at a significant current in order to get even microsteps. When
accuracy is required, the move current must generally be set equal to the
hold current. This is because if the current is reduced at the end of the
move, the motor will fall back into a detent position.

Appendix 6. Stepper motor electrical specification

Page 94 of 107

Appendix 6. Stepper motor electrical specification

The EZStepper® will work with most stepper motors. However, the
performance achieved will be a function of the motor used.

A stepper motor moves by generating a rotating magnetic field, which is
followed by a rotor. This magnetic field is produced by placing a sine
wave and a cosine wave on two coils that are spaced 90 degrees apart.
The torque is proportional to the magnetic field, and thus to the current in
the windings.

As the motor spins faster, the current in the windings needs to be
changed faster in a sinusoidal fashion. However the inductance of the
motor will begin to limit the ability to change the current. This is the
main limitation on how fast a motor can spin.

Each winding of the motor can be modeled as an inductor in series with a
resistor. If a step in voltage is applied, the current will rise with time
constant L/R. If L is in Henrys and R is in ohms, then L/R is the time it
takes in seconds for the current to reach 63% of its final value. (NOTE:
there is also the back EMF of the motor, which essentially subtracts from
the applied voltage.)

The current I for a step function of voltage V into a coil is given by:

I = (V/R) (1-^(tR/L))

This equation is a standard response of a first-order system to a step
input. The final value of current is seen to be V/R. (This system is similar
to a spring (L) in parallel with a damper (R) being acted upon by a step
in force (V) giving a resulting velocity (I).)

Maximizing speed at which current can be changed

There are two methods by which the current can be made to change
faster:

1. Reduce the inductance of the motor.

2. Increase the forcing function voltage V.

For (1) it is seen that for high performance, a motor with low inductance
is desired.

For (2) the trick is to use a motor which is rated at about ¼ of the supply
voltage (V). This minimizes the time it takes to ramp the current to a
given value. (Once the current reaches the desired value, the “chopper”
type drive used in the EZSteppers® will “chop” the input voltage in
order to maintain the current—so the current never actually gets to the
final value of V/R, but the advantage of “heading towards” a higher
current with the same time constant is that the current gets to any given
value faster.) In addition, using a lower voltage motor results in less back
EMF, and does not subtract as much from the applied voltage.

So, for example, for a 24V supply, use a motor rated at around 6V, and
then use the m and h commands to set the current regulation at or below

 Appendix 6. Stepper motor electrical specification

 Page 95 of 107

the rating for the motor. The default values on power-up are h=10% and
m=25%, and should be safe for most motors.

EZ4AXIS operation

The EZ4AXIS17XR will drive at 0.25A per phase when m=50 (peak of
sinusoidal drive move current waveform) with no restrictions.

However, at 0.5A per phase (peak of sine wave) when m=100, the drive
can only be operated at about 25% move time with rests in between at a
low hold current. Typically the move is limited because of thermal
considerations to a maximum of approximately one minute continuous.

Maximizing power to motors on EZ4AXIS17XR

In order to exploit the full capability of the EZ4AXIS17XR, the motors
must be of a low resistance (less than 5Ω or so) and the supply voltage—
as mentioned above—should be about 4X the motor voltage. So use a 6V
motor with a 24V supply. This is necessary not only for the reasons
described above, but also because the maximum input current from the
power supply is restricted to 2A. So input power is about 24V x 2A =
48W. The drive will step down the voltage and step up the current, much
like a switching supply. So when using 6V motors, a total of 48W/6V=
8A is available to drive the eight phases of the four motors. Thus it is
possible to get 0.5A amps per phase on four motors with the input
current being only two amps at 24V .

See also Appendix 7, “Heat Dissipation (EZStepper® products with
motor drives)” beginning on page 96.

AllMotion® provides a heat sink for this drive. Please see stepper
accessories on the AllMotion® website:
http://www.allmotion.com/stepperaccessories.htm

Summary

Motor/supply voltage requirements are affected by inductance,
resistance, and back emf. In order to obtain maximum current rise and
available power, the following are recommended:

• Use motors with low inductance and resistance (5Ω or less).

• Use motors with low voltage rating (e.g., 6V).

• Use power supply at 4X motor voltage (e.g., with 6V motors use a
24V supply).

• Set move and hold current values using h and m commands if change
from default is needed.

Appendix 7. Heat dissipation (EZStepper® products with motor drives)

Page 96 of 107

Appendix 7. Heat dissipation (EZStepper® prod-
ucts with motor drives)

Overview

Most stepper applications require intermittent moving of the motor. In
the EZStepper®, the current is increased to the move current, the move is
performed, and the current is then reduced to the hold current
(automatically). The dissipation in the drive is proportional to the current
flowing in the drive, and therefore the dissipation occurs primarily
during the move.

When the drive generates heat, the heat first warms the circuit board and
heat fin (ordered separately if needed)

Only then does the heat transfer to the surroundings. For intermittent
moves that are less than one minute in duration, the drive primarily cools
using this thermal inertia of the board and heat fin, and not by steady
state dissipation to the surrounding ambient.

Running at high current/duty cycle

The electronics for EZSteppers® are fully capable of running at the rated
voltage and current. However, due to the small size of the boards, which
limits the steady state heat transfer to the ambient, care must be taken
when the drive is used in high duty cycle and/or high current
applications. For conservative operation, it is recommended that the duty
cycle be reduced linearly, from 100% duty at 50% of rated current, to
25% duty at 100% of rated current. (Duty cycle means the percentage of
the time that the drive is moving the load, averaged over 5 minutes).
Conservatively, the maximum continuous run at 100% current is about
one minute. An on-board thermal cutout typically trips after about two
minutes at 100% current. (This cutout is self-resetting when the drive
cools). Of course, at 50% of current, the drive will run continuously with
no time limit.

Most “intermittent move” applications will NOT require derating of the
drive.

Typically if using the motor at high current and high duty cycle (move
time), please purchase the additional heat sink.

 In addition, if running high current on two motors, select non-adjacent
channels (1 and 3, for example) to distribute the heat load within the
board.

EZSteppers® are designed with parts rated at 85° C or better. This means

the PCB copper temperature must remain below 85° C. The ambient air
temperature allowed depends on the airflow conditions.

MTBF is 20,000 hr. at 85° C PCB copper temperature, and doubles for

every 10° C under 85° C.

Appendix 8. OEM Protocol with checksum

Page 97 of 107

Appendix 8. OEM Protocol with checksum

Introduction

The protocol described in the majority of this manual is DT (Data
Terminal). There is, however, a more robust protocol known as OEM
that includes checksums. AllMotion, Inc. drives work transparently
under both protocols, and switch between the protocols depending on the
start transmission character detected.

The OEM protocol uses 02 hex (Ctrl B) as the start character, and 03
Hex (Ctrl C) as the stop character. The 02 Hex start character is
equivalent to the / character in DT protocol.

OEM Protocol example 1

/1A12345R in DT protocol is equivalent to

(CtrlB)11A12345R(Ctrl C)# in OEM protocol.

Name Typed Hex

Start Character Ctrl B 02

Address 1 31

Sequence 1 31

Command A 41

Operand 1 31

Operand 2 32

Operand 3 33

Operand 4 34

Operand 5 35

Run R 52

End Character Ctrl C 03

Checksum # 23

The checksum is the binary 8-bit XOR of every character typed,
including the start and end characters. (The sequence character should be
kept at 1 when experimenting for the first time.) Note that there is no
need to issue a carriage return in OEM protocol.

Appendix 8. OEM Protocol with checksum

Page 98 of 107

OEM Protocol example 2

/1gA1000M500A0M500G10R in DT protocol is equivalent to
(CtrlB)11gA1000M500A0M500G10R(CtrlC)C in OEM protocol.

The C at the end is Hex 43, which is the checksum (binary XOR of all
preceding bytes).

Sequence Character:

The Sequence Character comes into effect if a response to a command is
not received from the drive. In this instance the same command can be
resent with bit 3 (repeat bit) of the sequence byte set, and bits 0-2
representing the sequence number.

When the repeat bit is set consecutive commands received by the drive
must have a different sequence number in order to get executed. Only the
sequence number is looked at—not the command itself—in determining
whether the command should be executed. So, if the drive has already
seen this command sequence (the value in bits 0-2), it will not execute it
again, but will acknowledge (again) that the command was received.

This covers both possibilities that (a) the drive didn’t receive the
command, and (b) the drive received the command but the response was
not received.

The sequence number can take the following values:

• 31-37 without the repeat bit set

• 39-3F with the repeat bit set

(The upper nibble of the sequence byte is always 3.)

 Appendix 9. Linear and circular interpolation

 Page 99 of 107

Appendix 9. Linear and circular interpolation

Drawing circles and lines – NOT IMPLEMENTED YET IN EZ4AXIS17XR – ONLY

IMPLEMENTED IN EZ4AXIS

The EZ4AXIS is capable of coordinated motion among axes.
Interpolation commands directly coordinate the motion of multiple axes
for specific tasks, and are available for drawing circles and straight lines.

Overview

Interpolation commands control Axes 1 and 2 simultaneously. To
implement interpolation commands, Axes 1 and 2 drive an X-Y type
mechanism such as shown here:

Figure 7 X-Y Mechanism for Interpolation Commands

You can see this mechanism in action in the demo video located at
http://www.allmotion.com/Flash_Video_Pages/Example_Videos/demos_
examples_4AXIS_Linear_flash.html

Figure 8 Circular and Linear Interpolation

Appendix 9. Linear and circular interpolation

Page 100 of 107

Circular interpolation

There are four commands associated with circular interpolation:

aaA Sets the diameter of the circle in microsteps (0 – 90000
microsteps)

aaI Sets beginning phase of the circle (0-1024) (de-
grees/360*1024)

aaW Sets the speed at which the circle is drawn in
microsteps/second (1-20000). Note: speed needs to be low-
er for larger diameter circles.

aaC Sets arc (how much of a circle is drawn) and initiates the cir-

cle drawing process (1-1024) (degrees/360*1024). Note:
aaC2048 will draw two circles on top of one another.

The following figure illustrates how the commands define the circle.

Figure 9 Circular Interpolation Command Effects

To draw a circle, issue a command such as:

/1aM1A40070,35200aaW1000aaI0aaA14000aaC256R

This results in an arc, or part of a circle, that is drawn at a speed of 1000
microsteps/second (aaW1000), begins at 0° (aaI0), has a diameter of
14000 microsteps (aaA14000), and spans an arc of 90° (aaC256).

NOTES

▪ Place commands in the order shown above.

▪ Do not add commands for axes 3 and 4 when issuing circular in-
terpolation command strings.

▪ Do not include circular interpolation commands with other
commands in the same string.

▪ Issue the aaC command last, since it initiates the circle drawing
process.

 Appendix 9. Linear and circular interpolation

 Page 101 of 107

Linear interpolation

Overview

To be implemented at a later date TBD . There are two commands
associated with linear interpolation:

an65536 Enable linear interpolation. The an command uses

weighted bit values just as the n mode commands do.

an0 Exit linear interpolation mode.

Once linear interpolation has been enabled, use the multi-axis A
command (move to absolute position), for example:

A1000,2000R (e.g., /1an65536 A1000,2000R)

This will cause Axis 1 to move to position 1000, and Axis 2 to move to
position 2000. The two moves are tied together so that the pen driven by
the two axes moves in a straight line. This is also demonstrated in the
video referred to above.

To move to multiple interpolated positions, use the A command for each
interpolated position. For example, notice A3500,6000 in this command
string:

/1an65536 A1000,2000,A3500,6000R

NOTE: You may issue a multi-axis command addressed to all four axes
while the linear interpolation mode is on. In such a case Axes 1 and 2
will move in interpolation fashion, while Axes 3 and 4 will move nor-
mally.

Exiting linear interpolation mode

To exit linear interpolation mode, enter the command an0 following the
move commands, e.g., /1an65536 A1000,2000,A3500,6000an0R or
/1an0R.

Appendix 9. Linear and circular interpolation

Page 102 of 107

Circle and star example

Introduction

This example describes how an EZ4AXIS was programmed to draw a
composite star-circle pattern utilizing a dual-axis stepper motor
mechanism equipped with ink pen actuated by a solenoid. Here is the
example pattern:

This pattern was implemented by five command strings, each stored in a
different memory location in the on-board EEPROM:

• Startup instructions, which set basic operating parameters and begins
the sequence when a high appears at Switches 1 and 2. (Memory
location 0, which runs automatically at power-up.)

• Draw star pattern utilizing linear interpolation. (Memory location 4)

• Return both axes home. (Memory location 7)

• Draw small circle pattern utilizing circular interpolation, and return
both axes home. (Memory location 5)

• Draw large circle pattern utilizing circular interpolation, return both
axes home, and then execute the string in memory location zero
(startup instructions). (Memory location 6)

At this point the equipment is ready to draw the pattern again when a
high appears at Switches 1 and 2.

 Appendix 9. Linear and circular interpolation

 Page 103 of 107

The star pattern

The following illustration shows the X-Y coordinates for points on the
star in a grid with a scale of 0-100. The X coordinate is written first, then
Y. Zero (0) represents the home positions of the two axes.

The coordinates are the starting and stopping points for the pen.

The X-Y numbers are translated proportionally into microsteps according
to the desired size of the star. This star was intended to fit into a space of
64000 microsteps, comfortably below the 70000 microstep range of the
fixture in use.

So each of the coordinates in a pair becomes a percentage of the 64000
microstep range (coordinate/100*64000 = coordinate in microsteps).

A 3200 microstep offset was then added to each of the coordinates to
place the star pattern well out of the way of the home positions of the
two axes.

For example, the coordinate 60 would be 60/100*64000+3200=41600.

Appendix 9. Linear and circular interpolation

Page 104 of 107

Command string for star pattern (location 4)

The coordinate pairs in the diagram above are shown in bold.

/1s4aM1V12000aM2V12000A60800,35200an65536J3A41600,28800,

A41600,9600,A28800,25600,A9600,19200,A22400,35200,A9600,51200,

A28800,44800,A41600,60800,A41600,41600,A60800,35200J0an0e7R

Breakdown:

/1 Select Drive 1.

s4 Store the following commands in memory location 4.

aM1V12000aM2V12000 Set velocities of Axes 1 and 2 to 12000
microsteps/second.

A60800,35200 Move Axes 1 and 2 to absolute positions comprising the
starting point for drawing the star.

an65536 Enter the linear interpolation mode.

J3 Turn ON/OFF drivers on, engaging the pen solenoid.

A41600 . . . 35200 Execute moves sequentially to absolute position
defined by each coordinate pair (e.g., A41600,28800) using the
absolute move command (A).

J0 Turn ON/OFF drivers off, releasing the pen solenoid.

an0 Exit the linear interpolation mode.

e7 Execute string 7 (the program in memory location 7), the
homing command string. Note that this is stored in a separate
location from the star pattern to avoid exceeding the capacity
of the memory location.

R Run the command string.

Command string for homing after drawing star pattern
(location 7)

/1s7aM1V30000f1Z200000aM2V30000f1Z200000e5R

Breakdown:

/1 Select Drive 1.

s7 Store the following commands in memory location 7.

aM1V30000f1Z200000 On Axis 1, set velocity (V) to 30000
microsteps/second; set polarity of home flag to normally open
(f1); and go home (Z), allowing 200000 microsteps to reach
home.

aM2V30000f1Z200000 Same as above for Axis 2.

e5 Execute the contents of memory location 5 (the small circle
pattern).

R Run the command string.

 Appendix 9. Linear and circular interpolation

 Page 105 of 107

Circle patterns

• The circles are both aligned with the center of the star on the Y axis.

• The radius is the distance, in microsteps, from the center of the star
to the desired circumference. Multiplied by two, this is the diameter
used in the command string.

• The remaining commands are described on a previous page.

• The circle command string should have commands placed in the
order shown and include a command to home both axes. A velocity
command is included, noting that the velocity must be lower for
successfully drawing larger circles.

Command string for smaller circle (location 5)

/1s5aM1V8000aM2V8000aM1A40070,35200J3aaW1000aaI256
aaA14000aaC1024J0aM1V30000f1Z200000aM2V30000f1Z200000e6R

Breakdown:

/1 Select Drive 1.

s5 Store the following commands in memory location 5.

aM1V8000aM2V8000 Set velocities of Axes 1 and 2 to 8000
microsteps/second.

aM1 Select Axis 1.

A40070,35200 Move Axes 1 and 2 to absolute positions comprising the
starting point for drawing the circle.

J3 Turn ON/OFF drivers on, engaging the pen solenoid.

aaW1000 Set speed of drawing to 1000 microsteps/second.

aaI256 Set beginning phase of circle to 90 degrees.

aaA14000 Set diameter of circle to 14000 microsteps.

aaC1024 Draw a full 360 degree circle. This command also starts the
circular interpolation mode.

J0 Turn ON/OFF drivers off, releasing the pen solenoid.

aM1V30000f1Z200000 On Axis 1, set velocity (V) to 30000
microsteps/second; set polarity of home flag to normally
open (f1); and go home (Z), allowing 200000 microsteps to
reach home.

aM2V30000f1Z200000 Same as above for Axis 2.

e6 Execute the contents of memory location 6 (larger circle
pattern).

R Run the command string.

Appendix 9. Linear and circular interpolation

Page 106 of 107

Command string for larger circle (location 6)

/1s6aM1V12000aM2V12000aM1A33070,67200J3aaW1000aaI0

aaA64000aaC1024J0aM1V30000f1Z200000aM2V30000f1Z200000e0R

Breakdown:

/1 Select Drive 1.

s6 Store the following commands in memory location 6.

aM1V12000aM2V12000 Set Axes 1 and 2 velocities to 12000
microsteps/second.

aM1 Select Axis 1.

A33070,67200 Move Axes 1 and 2 to absolute positions comprising the
starting point for drawing the circle.

J3 Turn ON/OFF drivers on, engaging the pen solenoid.

aaW1000 Set speed of drawing to 1000 microsteps/second.

aaI0 Set beginning phase of circle to 0 degrees.

aaA64000 Set diameter of circle to 64000 microsteps.

aaC1024 Draw a full 360-degree circle. This command also starts the
circular interpolation mode.

J0 Turn ON/OFF drivers off, releasing the pen solenoid.

aM1V30000f1Z200000 On Axis 1, set velocity (V) to 30000
microsteps/second; set polarity of home flag to normally open
(f1); and go home (Z), allowing 200000 microsteps to reach
home.

aM2V30000f1Z200000 Same as above for Axis 2.

e0 Execute command string stored in memory location 0 (startup
command string).

R Run the command string.

 Appendix 9. Linear and circular interpolation

 Page 107 of 107

Command string for startup (location 0)

This is the command string designed to execute at power-up, since it is
stored in memory location 0.

/1s0aM1m30L10V5000f1Z200000aM2m30L10V5000f1Z200000H01H02

M100e4R

Breakdown:

/1 Select Drive 1.

s0 Store the following in memory location 0.

aM1 Select Axis 1.

m30 Set move current to 30% of max (2A).

L10 Set acceleration factor to 10.

V5000 Set velocity (V) to 5000 microsteps/second.

f1 Set polarity of home flag to normally open (f1).

Z200000 Go home (Z), allowing 200,000 microsteps to reach home.

aM2m30L10V5000f1Z200000 Same as above for Axis 2.

H01 Halt and wait for 0 on Switch 1.

H02 Halt and wait for 0 on Switch 2.

M100 Wait 100 milliseconds.

e4 Execute the contents of memory location 4 (the star pattern).

R Run the command string.

