SIEMENS

SIMATIC

S7

S7-1200 Programmable controller

System Manual

V4.4 11/2019

A5E02486680-AN

Preface

Product overview

New features

STEP 7 programming
software

Installation

PLC concepts

Device configuration

Programming concepts

Basic instructions

Extended instructions

Technology instructions

Communication

Web server

Communication processor
and Modbus TCP

TeleService communication
(SMTP email)

Online and diagnostic tools

Technical specifications

Calculating a power budget

Ordering Information

Device exchange and spare
parts compatibility

OO0 ®m > G R oo 2lae|© oo N o ag| & jw(N|=

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\ DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

A\ WARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\ CAUTION
indicates that minor personal injury can result if proper precautions are not taken.

NOTICE
indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be
used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property
damage.

Qualified Personnel

The product/system described in this documentation may be operated only by personnel qualified for the specific
task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified
personnel are those who, based on their training and experience, are capable of identifying risks and avoiding
potential hazards when working with these products/systems.

Proper use of Siemens products

Trademarks

Note the following:

A\ WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended or
approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be complied with. The information in the relevant documentation must be observed.

All names identified by ® are registered trademarks of Siemens AG. The remaining trademarks in this publication
may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described.
Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this
publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Siemens AG A5E02486680-AN Copyright © Siemens AG 2019.
Digital Industries ® 10/2019 Subject to change All rights reserved

Postfach 48 48

90026 NURNBERG

GERMANY

Preface

Purpose of the manual

The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a variety
of automation applications. Compact design, low cost, and a powerful instruction set make the
S7-1200 a perfect solution for controlling a wide variety of applications. The S7-1200 models
and the Windows-based STEP 7 programming tool (Page 37) give you the flexibility you need
to solve your automation problems.

This manual provides information about installing and programming the S7-1200 PLCs and is
designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual
This manual describes the following products:
e STEP 7 Basic and Professional (Page 37)
e S7-1200 CPU firmware release V4.4

For a complete list of the S7-1200 products described in this manual, refer to the technical
specifications (Page 1307).

Certification, CE label, C-Tick, and other approvals

Refer to the technical specifications | (Page 1307) for more information.

Service and support

In addition to our documentation, Siemens offers technical expertise on the Internet and on the
customer support web site (http://support.industry.siemens.com).

Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process and
industry, as well as about the individual Siemens products that you are using, they can provide
the fastest and most efficient answers to any problems you might encounter.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 3

http://support.industry.siemens.com

Preface

Documentation and information

S7-1200 and STEP 7 provide a variety of documentation and other resources for finding the
technical information that you require.

® The S7-1200 Programmable Controller System Manual provides specific information about
the operation, programming, and the specifications for the complete S7-1200 product family.
The system manual is available as an electronic (PDF) manuals. You can download or view
this and other electronic manuals from the Siemens Industry Online Support Web site (http://
support.industryv.siemens.com). The system manual is also available on the Documents
Disk that ships with every S7-1200 CPU.

® The online STEP 7 information system provides immediate access to the conceptual
information and specific instructions that describe the operation and functionality of the
programming package and basic operation of SIMATIC CPUs.

® The Siemens Industry Online Support Web site (http://support.industry.siemens.com)
provides access to the electronic (PDF) versions of the SIMATIC documentation set,
including the system manual, and the STEP 7 information system. Existing documents are
available from the Product Support link. With this online documentation access, you can
also drag and drop topics from various documents to create your own custom manual.
Updates to previous-published system manuals are also available from Siemens Industry
Online Support.
You can access online documentation by clicking "mySupport" from the left side of the page
and selecting "Documentation” from the navigation choices. To use the mySupport
Documentation features, you must sign up as a registered user.

® The Siemens Industry Online Support Web site also provides FAQs and other helpful
documents for S7-1200 and STEP 7.

® You can also follow or join product discussions on the Service & Support technical forum
(httos://support.industryv.siemens.com/tf/ww/en/?
Language=end&siteid=csius&treel anga=en&aroupid=4000002&extranet=standard&viewrea
=WW=&nodeid0=34612486). These forums allow you to interact with various product
experts.

— Forum for S7-1200 (httos://support.industrv.siemens.com/tf/ww/en/threads/2377
title=simatic-s7-1200&skip=0&take=10&orderBv=LastPostDate+desc)

— Forum for STEP 7 Basic (https://support.industryv.siemens.com/tf/ww/en/threads/24 37
litle=step-7-tia-portal&skip=0&take=10&orderBv=LastPostDate+descd)

Security information

Siemens provides products and solutions with industrial security functions that support the
secure operation of plants, systems, machines and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is
necessary to implement — and continuously maintain — a holistic, state-of-the-art industrial
security concept. Siemens’ products and solutions constitute one element of such a concept.

Customers are responsible for preventing unauthorized access to their plants, systems,
machines and networks. Such systems, machines and components should only be connected
to an enterprise network or the internet if and to the extent such a connection is necessary and
only when appropriate security measures (e.g. firewalls and/or network segmentation) are in
place.

S7-1200 Programmable controller
4 System Manual, V4.4 11/2019, A5E02486680-AN

http://support.industry.siemens.com
http://support.industry.siemens.com
http://support.industry.siemens.com
https://support.industry.siemens.com/tf/ww/en/?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://support.industry.siemens.com/tf/ww/en/?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://support.industry.siemens.com/tf/ww/en/?Language=en&siteid=csius&treeLang=en&groupid=4000002&extranet=standard&viewreg=WW&nodeid0=34612486
https://support.industry.siemens.com/tf/ww/en/threads/237?title=simatic-s7-1200&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/237?title=simatic-s7-1200&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/243?title=step-7-tia-portal&skip=0&take=10&orderBy=LastPostDate+desc
https://support.industry.siemens.com/tf/ww/en/threads/243?title=step-7-tia-portal&skip=0&take=10&orderBy=LastPostDate+desc

Preface

For additional information on industrial security measures that may be implemented, please
visit (httos://www.siemens.com/industrialsecurity).

Siemens' products and solutions undergo continuous development to make them more secure.
Siemens strongly recommends that product updates are applied as soon as they are available
and that the latest product versions are used. Use of product versions that are no longer

supported, and failure to apply the latest updates may increase customers' exposure to cyber

threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS
Feed visit (https://www.siemens.com/industrialsecurity).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

https://www.siemens.com/industrialsecurity
https://www.siemens.com/industrialsecurity

Preface

S7-1200 Programmable controller
6 System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

PIEFACE ... iuieiisiiisiissedsn s s sme s s s s sn s m e s R A A AR £ A R £ R AR AR R A R A RS A AR AR AR n s nn e 3
1 PrOQUCE OVEIVIEWcciiuririsinssssnnssssnssssnnnssssmssssnnnssssmsessnnns s mnsssssnsssamnnssasnsssmnsssssnsesssnns s mnsssnns s mnnssndennnns 27
1.1 Introducing the S7-1200 PLC.......ooiiiiiiiiiiiieeee et e e eeeeeeeeeaeeesdunnnes 27
1.2 Expansion capability Of the CPUcoiiiiiiiiiiiiei e ssnnnee s dbesens 31
1.3 BaSiC HMI DANEISceeeeiiiiiiiiiiiiiieeeeeeeeeee ettt e e e e e e s snsssnnnneeeeeaeeedunnnes 32
2 INEW FOALUIESeiiisieiisirsismsismseseessses s s ssns s ssn s mnss s fsns nssnea Reea ARt e ARt AR £t e AR R R £ n sk fnan e mneameea s s s deannes 35
3 STEP 7 programming SOftWAIEccccrieummmasnriasnmnsssssssssnnnsssssessssnnssssssssssnnssssnmsssssnssssnmnssssnssssnnnsssstesssss 37
3.1 SyStEM rEQUIFEMENTS ..ottt e e e e s s sssnssssnnseeesesasesdunnnns 37
3.2 Different views to make the WOrk €asier ... b 39
3.3 EASY-10-USE t00IS ...ueeeiiiiiiiiiiiiiieee et e e e nnnneeeeeaeeedunnne 40
3.3.1 Inserting instructions iNt0 YOUr USEr ProQramccoiiiiiiceeeiieiiiiieeeeeeeiesiiiiieeeeee e e eee e duneas 40
3.3.2 Accessing instructions from the "Favorites" toolbar............cccccceeeeeiiiiiiiiciii i, 41
3.3.3 Creating a complex equation with a simple instructioncccccceeiiiiiiiiiiii s 41
3.34 Adding inputs or outputs to a LAD or FBD instruction...........cccccceeeiinioiiiiiiiiiiiieee i, 43
3.3.5 Expandable iNStrUCiONS ... a e e e dannnes 44
3.3.6 Selecting a version for an iNStruCtioNoccuueeiiiiiiii e e 44
3.3.7 Modifying the appearance and configuration of STEP 7........cccccceviiiiiiiiiiiiiiiiiiieieeeee i, 45
3.3.8 Dragging and dropping between editorscccceeeeeiiiiiiiiiiiiiiiiiieeeieeeeeeee s 46
3.3.9 Changing the operating mode of the CPUcceiiiiiiiiiiiiiiiiiiiiiieeeeeeee 46
3.3.10 Changing the call type for @ DB ... e e 48
3.3.11 Temporarily disconnecting devices from a networkccccceeeeiiiiiiiiiiiiiiieee i, 48
3.3.12 Virtual unplugging of devices from the configurationcccccceiiiiiiiiiiiiiii e, 50
3.4 Backward compPatibility.......cuuiuueriiiiiii e b 50
4 INSTANALIONcoiueceiiieiimreees e smres s s e s nns s mres s s mn s s s mnns s nns s mnns s anesanne s anes s s nns s e nnnns 53
4.1 Guidelines for installing S7-1200 AEVICEScouiiiuuriiiiiiiiiiiiiinnneeiiinnnneessssnsneesssssssneesssstbesens 53
4.2 Power BUAQEL nnneeeeeeae e dunnnes 54
4.3 Installation and removal ProCEAUIESccuuuuuieiiiiiiiiieeeeieiiieeeee e eeeeaeeesdunnnes 56
4.3.1 Mounting dimensions for the S7-1200 deVICESooouiiiiiiiiiuiiieiiiiiiieeeeeeiiiiieeeeeeeeeee e 56
4.3.2 Installing and removing the CPU...........oooiiiiiiiiie e e e 59
4.3.3 Installing and removing an SB, CB, Or BBccooiiiiiiiiiiiiiiiiiiiieeeeeeiiiieeeeeeeeeee e 61
4.34 Installing and removing @Nn SM.........ooooiiiiiiiiiiee e e e e e e dannaes 63
4.3.5 Installing and removing @ CM OF CP ... eeeeeee e dunnnes 64
4.3.6 Removing and reinstalling the S7-1200 terminal block connectorcccccueeeeeeeeee e, 65
4.3.7 Installing and removing the expansion cableccccooiiiiiiiieeeeiiiiiiieeeeeeee 66
4.3.8 TS (TeleService) adapterccc..uuueeeeiiiieeeeeeieeeeeee et e e e e e s sssnsssnnseeesesasesdunnnes 68
4.3.8.1 Connecting the TeleService adapter...........occcuuuueeeiiiiiiiiiiiiieee e e e e e e 68
4.3.8.2 Installing the SIM Card.........cc.uuueeieiiiiieeeieeeee et e e e e s s ssssssenneeeeeeeasesdunnnes 69
4.3.8.3 Installing the TS adapter unit on a DIN railcoeiiiiiiiiiiiiiiiieiiiieeeeeeeee s 70
4.3.8.4 Installing the TS adapter on apanelcccuuuueeieeiiiiiieeee e e 71

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 7

Table of contents

4.4 WirNG QUIAEIINES ...tttk e s s e s sneeesndbesess 72
5 PLC CONGEDESeiieuussssesismssssnssssssnsssssssssssnssssssssssssssssnsssssssssssnssssssnsssssssssssnssssssssssssssssnsssssssssssnssssssnssssnstssnsss 79
5.1 Execution Of the USEr Program iuueeiniiiiiiiiiiiiessiineie s sssssseesssssssneesssssssnessssndbesess 79
5.1.1 Operating Modes Of the CPUoiiuuiiiiiiiiiiniiiinnineie s sssnssessssssssneesssssssnsssssstheses 83
5.1.2 Processing the scan cycle in RUN MOdEcooiiiuiiiiiiiiiiiiiiiiiiiieeiesssnneeesssnnnnessssnsbesens 86
5.1.3 Organization DIOCKS (OBS)i.uuuuiiiiiriniiiiiniiniieiisiseeissssssnee s s s sssessssnsnssessssssnsesssssssnsssssstheses 87
5.1.3.1 Program CYCIE OBoiuuuiiiiiniiiiieiiiineieessssaseessssssseesssssssessssssssssssssnsssssssssssnssssssssnssssssthesess 87
5.1.3.2 SEAMUD OB ...ttt et es e e e st e st e st e esn et e s nne e s sne e s st nnns 88
5.1.3.3 Time delay interrupt OB ... s ssneesssnnssnsesssndbesess 88
5.1.3.4 CYClIC INTEITUDE OB ...tttk sttt e s e s e ssssnesesndbesess 88
5.1.3.5 Hardware interrupt OBooiuuuiiiiiiiiiiiineieessnseee s ssssseeesssssnessssnssssessssssnsssssssssnssssssthesess 89
5.1.3.6 Time error iNterruPt OB ... itttk e s s s s s s snsessssnssneesssndbesess 90
5.1.3.7 Diagnostic error interrupt OBiiuuuiiiiiiiiiiniieesnssneiesssssnessssssnsssssssssnsssssssssnessssstbeses 91
5.1.3.8 Pull or plug of MOdUIES OBcoiiiiiiiiiiiiiiiiiiiiiiii i snee s sssneesssssnsneessssdbesess 93
5.1.3.9 Rack or station failure OBcc i sssssnsesssssssneesssssssnsssssstbesens 94
5.1.3.10 TiME OF AAY OBuiiiiiiiiiiiiii ittt e st e s st e e st e e st e e s s snnsessndbesess 94
5.1.3.11 SEALUS OB ...ttt et e sttt e es e e s e easseeesn e e sneeesn et e s nne e s sneeensdesnnns 95
5.1.3.12 UDAALE OB ...ttt e e es e eeess e sss e e sseeesnneessnneesnsneesnsdesnnns 95
5.1.3.13 PrOfilE OB ...ttt e s ess e s e e s e esnne e s nne e s sneeensdennnns 96
5.1.3.14 MC-Servo and MC-Interpolator OB..........u e iiiiiiiieiiennnieeeessnnneessssnsneesssssnsnessssstbeses 96
5.1.3.15 IMC-PIESEIVO ..otttk e skt s et e sttt e A bttt st e s dbneens 96
5.1.3.16 IMC-POSESEIVO ...tttk kst set et t e e sttt et e s dbeeens 97
5.1.3.17 Event execution prioritieS and QUEUINGuuuuiiimrrriiiiiiiieiiessnnneeessssnseesssssssnesssssssnssssssstbeses 98
5.1.4 Monitoring and configuring the CYCle tiMe.......cciuiiiiiii e b 101
5.1.5 CPU IMEIMOIY 1tttk ettt sttt Rttt ettt s e s 103
5.1.5.1 System and CIOCK MEMIOIYi.uuuuiiiiiriiiiiiniieieeinssaeesssssnnnsssssssssssssssssnsesssssssnssssssssnnssssdhess 105
5.1.6 DiagNOSHICS DUFFETciiiiiiiiiiiiiiiiiiiei ikttt s e e s snns s e s dbes 107
5.1.7 TiME OF AAY CIOCK ...tttk ettt e s e e s s esssdbns 108
5.1.8 Configuring the outputs on a RUN-t0-STOP transition ... 108
5.2 Data storage, memory areas, I/O and addreSSingc..umrmmmininnnnmieninnnneeesssnnneessssibess 109
5.2.1 Accessing the data of the S7-1200 ... ssnsnee s dbees 109
5.3 Processing of analog VAlUESoouuuiiiiiiiiiiiiiissisieeee s s bnsesssssssnesssssnsnnsesssdbes 114
5.4 DAtA LYDES ...tttk ettt b 116
5.4.1 Bool, Byte, Word, and DWord data tyDesScc.ueuuueeeiiiiiieiiieiiiiiiiieeeceeeeeesseneeeeeeeeee e 117
5.4.2 INtEAEr dAta LYDES .oiiiieiiiiiiiiiiiii ikttt et e s s nneeesnnndbean 118
54.3 Floating-point real data tyPeSouuiiuurriiiiiiiiiii it e snee e s dbes 118
54.4 Time and Date data@ tYDESoiuuuuiiiiiiiiiiiiieiieii it s e s s snessssnsnnsssssdbes 119
54.5 Character and String data tyDESuuueiiiiiiiiiiiiiiiii e nnee s nnnesssssnsnnsesssdbees 120
5.4.6 ATAY AALA TVDE etttk ettt e st e et e st s s dbns 122
54.7 Data Structure data tyDeoicueeiiiiiiiiiiiiiiiii e n e nnne s dbes 123
5.4.8 PLC At tYDE ittt sttt b 123
54.9 Variant poiNter data fYDEuiuuuuiiiiei it nne s nnne e ssnnnnes e s dbes 124
5.4.10 Accessing a "slice" of a tagged data tyPe ... s 124
5.4.11 Accessing a tag With an AT OVErAY ... nnee s dbes 126
5.5 USING @ MEMOTY GO ...tteiiiiiniieeiessisseeeesssssseesssssssasssssssssnssssssssssssssssssnsssssssssnssssssssnnsssssdhess 127
5.5.1 Inserting a memory card in the CPU ... ssnese s snnessssnnndeess 128
5.5.2 Configuring the startup parameter of the CPU before copyving the project to the memory
o7] (o [T O OO SRR O TSRS PPPRRR T PPPURPPTPPURTT FP 131
5.5.3 TTANSTEE GO ..tttk sttt ettt s s s e s dbns 131

S7-1200 Programmable controller
8 System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

5.5.4 PrOQram CAuueiiiiiiiniiiiiiisieiee i eeee st e s st s st e s s st e e s s e ssnnssnssessdbns 134
5.5.5 FIrmMWare UDAALEouiiiiieiiiiiiiiiii ikttt s st s s s s ssnnsss s dbns 137
5.6 Recovery from a 10St DASSWOIT.......oiuuuriiiiiiiiiiiiiiniiiieiinnieees s sseessssssnneesssssssnesssssssnnsssssdhnss 140
8 DEVICE CONMIQUIALION ... ciiarrmsessninssseassesssnesssnsssssssnnsssnssnsesnessssessmesssnssssesssssanns s snsnsessnessmssssnessssssssssnsianns 141
6.1 INSEIING @ CPU ...ttt e st s et e s s snesssnnndbess 142
6.2 Uploading the configuration of a connected CPUcccccoiiminnniiiieieennineee s dhes 144
6.3 Adding modules to the CoNfiQUration...........cuuiimii e dbeas 145
6.4 CoNfiGUration CONTIOuueeiiiiiriieiiiinrineie s e e s s st asssssssnss s s sneesssssssnnssssssssnsssssdhnss 146
6.4.1 Advantages and applications of configuration CONtrol...........cccoeeiiiniiniiieeeeedhens 146
6.4.2 Configuring the central installation and optional modules..........ccccccciieiiiiiiiiiiiiiiiiieeeee e 147
6.4.3 Example of configuration CONIOL..........uuuiiiiriiiiiiiie e n e nnee s s dbeas 153
6.5 ChanQiNg @ JEVICEooiiuuuuiiiiiinniiiiiinsineiessssseesssssssnessssssssnsssssssssnsssssssssssssssssnnssssssssnssssdhnss 156
6.6 Configuring the operation of the CPUcccccoiiiiiiiiiei e ssnsnes s dbeas 157
6.6.1 OVEIVIEW ..tttk ekttt ARttt et s b 157
6.6.2 Configuring digital input filter tIMeS ... dbeas 158
6.6.3 PUISE CAICN. ...tttk nne e b 160
6.7 Configuring Multilingual SUDDOIuuuiiiiiiiiiiiiiiiieeie e snneesssssnnnesssssnsnesesssdbns 161
6.8 Configuring the parameters of the MOdUIES ... s 162
6.9 Configuring the CPU for communiCatioNcurimiiiiniiii s nneessssnsnees s dbeas 164
6.10 TiME SYNCIIONMIZALION .tttk s s e s s nsnsse s dbns 165
7 PrOQraMIMING CONCEDES. ... uuuriiiasunnnnmsisnsnnnnsssssnnsssassssnsnsssssssssssassssnnssssssssnsnssssssnnsssessssnnnsssssssnnsssssssnnnssssihnns 169
71 Guidelines for designing @ PLC SYSIEMi.uuuiiiiiiiiiiiiiiieiiinineiessnnneesssssssnessssnsnssssssdbes 169
7.2 SHrUCLUNING YOUT USEI DIOGIAIM ..uvviiiiinnniiieinssneisssssssnssssssssnnssssssssnssssssssnsssssssssnssssssssnnsssssihnss 170
7.3 Using blocks to Structure YOUr DrOGrameuiiisrrmeiiinnnieienisnnnessssssnnnsesssssssnssssssssnssssssihess 171
7.3.1 Organization BIOCK (OB)uuiuuuuiiiinniniiiinnriisesnssneesssssnnnssssssssnssssssssnsssssssssnssssssssnnsssssdhnss 172
7.3.2 FUNCHON (FC) itttk ettt et s s b 174
7.3.3 FUNCHON DIOCK (FB) ..ttt et s s b 175
7.3.4 Data DIOCK (DB) ... ittt e s e s s e e sseessnseeesnsessnsnsesnndenss 176
7.3.5 Creating reusable COAE DIOCKSoiiuuumiiiiiiiiiiiiiiniiiiessnnieesesssnseesssssnneesssssnsnssssssssnesssssdhess 178
7.3.6 Passing parameters t0 DIOCKSoiiuuuriiiiiiiiiii s dbeas 178
7.4 Understanding data CONSISLENCYuuuriiiiiniiiiiiiininiiniinnineesssnness s snnnsesssssssnsssssssssesssssdhnss 181
7.5 Programming laNQUAGEcoiiuurueiiiiiiiiiiiiiieiee s sneee s ssnneassssssnssssssssnessssssssnsssssssssnssssdhnss 182
7.51 Ladder 10GIC (LAD) ...uiiiiiuureiiiiiniineieeisstneiessssseese s s s s snessssssssnss s s sssssssssssnnsessssssnsssssdhnss 182
7.5.2 Function Block Diagram (FBD)ccuuuiiiumuiininiiniisineeesssnnesesssssnsssssssssnsssssssssssssssdhess 183
7.5.3 S O IS USROS U PR UP RS UPR T OPRRRUPRTPPRY S 183
7.5.3.1 SCL DrOGram EAITON .. .uiiiuurniiiiinnrieiesinssneiessssneeesssssnsessssssnnessssssssnsssssssssssssssssnsssssssssnsssssdhess 184
7.5.3.2 SCL expressions and OPEratiONSuuiurrueiiinnnneieiisnnneesssssnnesssssssneesssssssnssssssssnessssihess 185
7.5.3.3 Indexed addressing with PEEK and POKE inStruCtions............coorrrnninnninnnntinns 189
7.5.4 EN and ENO for LAD, FBD @Nd SCLcciiuuiiiiiiiiiiiiiiieeiiieesieeesiieesisee s ssessnseessnntonss 190
7.6 PrOTECHION ...ttt sttt e s e b 192
7.6.1 Access protection for the CPU ... s dbes 192
7.6.2 External [0ad MEMIOIYuuuiiiiiiiiiiiiiniiessssieesesss e e s sbneassssssnssss s sneesssssssnsssssssssnsssssdhnss 195
7.6.3 KNOW-NOW DIOtECHON. ...tttk s e s snne s e s dbns 195

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 9

Table of contents

10

7.6.4 (070] 0}V o] (0] (=Y 1 o] o U UU R S OSSR OT PP U UTR TSRO PPPURPRPPURTT F 196
7.7 Downloading the elements Of YOUr DrOGramc.cueiiiimmneiiiininiieisnnneesssnsnesssssnnnsessssdhees 198
7.8 Synchronizing the online CPU and offline project..........ccccciiiiiiieiessiienesss s 201
7.9 Uploading from the onling CPU............uuiiiiiiiiiiiiiinieiiessinesessnsnse s ssnesssssnsnesssssdbes 203
7.91 Comparing the online CPU to the offline CPUcccoiiiiiiiiiiiiieeeeniineee s e 203
7.10 Debugging and testing the Program ... snsnes s dbes 203
7.101 Monitor and modify data in the CPU ... sneessssnsnes s dbes 203
7.10.2 Watch tables and force tables ... dbes 204
7.10.3 Cross reference 10 SNOW USAQEoiuuuruiiiiiiiiiiiiiiiiiiieiinsieessssssneee s ssnnsesssnsssnssssssssnssssssdhess 205
7.10.4 Call structure to examine the calling hierarchy ... e 206
BasiC iNSITUCHONS......cuiuririisiniinirs s snnns e snnns s msessnnns s mnsssnnns s mnns s sns s smnnssssnsssmnnssssmnessnnsssmnsssnntosas 207
8.1 Bit [OQIC ODEIAtIONSviiiieieiiiiiiiiiiieiiniteeie st s et s s st ssssssssne s s s snnessssssbnnssssssssnsssssdbnss 207
8.1.1 Bit [0QIC INSIIUCHIONS .otttk ettt s e s s snnsesssdbns 207
8.1.2 Set and reset INSITUCHONSiiuuriiiiii i sbneessssnsnesssssdbes 210
8.1.3 Positive and negative edge iNStruCtioNScciiiiiii e dbes 212
8.2 TIMET ODEIATIONS ...ttt ssss et eessss st e s s s st e s ss s st e s st e e s st e e s nnessnsssnssessdhns 215
8.3 COUNLET OPEIALIONS. ..ciii itttk st e st e s s bt e st e e s neeesssssnssessdbns 223
8.4 COMPArator OPEIALIONSuuiiiiurrniiiiiinnniiesnsreesessssneeessssnnnsesssssssnsssssssnsssssssssnssssssssnnssssdhess 228
8.4.1 Compare Values iNSITUCLIONSuuuiiiiriiiiiiiiiiiiesinsineessssssseesssssssnessssssssnsesssssssnssssssssnssssssdhess 228
8.4.2 IN_Range (Value within range) and OUT_Range (Value outside range)...........cccccviinnnniinn. 229
8.4.3 OK (Check validity) and NOT_OK (Check invalidity)commmniiinieeiessnnneneessndhes 229
8.4.4 Variant and array comparison iNSTIUCHIONSc.oiiurrriiiiiiiieiiiinineiesnnrneessssnnneessssnnnssssssdhess 230
8.4.4.1 Equality and non-equality comparison inSIrUCIONSueiiimrreiiiiiniieeessnnneee s e 230
8.4.4.2 Null cOMPArsion INSIIUCHIONSuuviiiiiriiiiiiiiiiiieiinnieeiessssnnee s sneee s sssnsesssssssnssssssnsnnsssssdhess 231
8.4.4.3 IS_ARRAY (Check fOr ARRAY)ciiiieiiiiiiiiiiiieie ettt e sieesssnnessssseessnsssssnntonss 232
8.5 Math FUNCHIONS ...ttt et e s dbns 232
8.5.1 CALCULATE (CalCUIALE)ciiiiuurreiiiiiiiiiiiinsiieiessnssneesssnsnnesssssssssnssssssssnsesssssssnssssssssnnssssdhess 232
8.5.2 Add, subtract, multiply and divide inStruCtionsccccooiiiiiiiiunniiiiiiiiiieeeieiieeeeeeeea b 233
8.5.3 MOD (return remainder Of diVISION)ouuiurureiiiinniniiiinnnieieesnsnneeesssnrneesssssssnesssssnsnesesssdbess 234
8.5.4 NEG (Create twOS COMPIEMENT)o.uuiiiiiiiiniiiiiiiiiiiiie e sss e s ssbneesssnsnsnesssssnsnesesssdbess 235
8.5.5 INC (Increment) and DEC (DECIreMENL)uuiiiurrmiiiiinnniiiiinnnneiessnnnnneesssssnnessssnsnnesssssnstoes 236
8.5.6 ABS (FOrm absolute ValUE)uuiiiuiiiiiiiiiiiiiiiiiiniieie e nnees s s sneesssnsssnesssssnsnesssssdbess 236
8.5.7 MIN (Get minimum) and MAX (Get MaxXimum)corrini e sssnnnses s dbees 237
8.5.8 LIMIT (Set limit VAIUE)eiieeiiiiieieiiiieiieeeieeeseee ek e e e ssesesnseeesnndenas 238
8.5.9 Exponent, logarithm, and trigonometry inStruCtions ..o e 239
8.6 MOVE ODEIALIONS. ...ttt ssssteeee st e e st e st e st e st e e s nne e s s ssnssessdbns 241
8.6.1 MOVE (Move value), MOVE_BLK (Move block), UMOVE_BLK (Move block

uninterruptible), and MOVE_BLK_VARIANT (Move bIOCK)ccoiimmmiiiiiniiiiiiiieiennnnieens 241
8.6.2 DESEIIANIZE ...tttk s ettt b 244
8.6.3 SEIIANIZE etttk e b 246
8.6.4 FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible)ccccccceeiiiinnnnenniienn. 249
8.6.5 SWAP (SWAD DYEES) ...ttt ettt esssee s e ssssessssseessseessssssssnsesssionss 250
8.6.6 LOWER_BOUND: (Read out ARRAY IOW lIMIit)ceuiiiunnneiiinniniininnnnniesssnnneessssnnnesssssdhees 251
8.6.7 UPPER_BOUND: (Read out ARRAY high limit)coiiumminiiiiiinieeessnnnees s dhes 252
8.6.8 Read / Write memory iNSTrUCHIONSuuviiiiiiiiiiiiiiiiiiiiiiiiieeeesssisese s e ssss s s s sssnnnesssssdbes 254
8.6.8.1 PEEK @nd POKE (SCL ONIY)....uuiiiiiiiiiieieiiieeiiieie st eeesseeesssseesnsseessssessssssssssesssnsssssssionss 254
8.6.8.2 Read and write big and little Endian instructions (SCL)ccccioimiiiiiiniieneesndhes 255

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

8.6.9
8.6.9.1
8.6.9.2
8.6.9.3
8.6.10
8.6.10.1
8.6.11
8.6.12
8.6.13
8.6.14

8.7
8.7.1
8.7.2
8.7.3
8.7.4
8.7.5
8.7.6
8.7.6.1
8.7.6.2

8.8
8.8.1
8.8.2
8.8.3
8.8.4
8.8.5
8.8.6
8.8.7
8.8.8
8.8.9
8.8.10
8.8.10.1
8.8.10.2
8.8.10.3
8.8.10.4
8.8.10.5
8.8.10.6
8.8.10.7
8.8.10.8
8.8.10.9
8.8.10.10

8.9

8.9.1
8.9.2
8.9.3
8.9.4

8.10
8.10.1
8.10.2

Variant iNSITUCHONSciiiiiiiiiiiiiiiiii ittt s s e s s s s ssnnnsnssessdbns 257
VariantGet (Read VARIANT a0 VAIUE)ouuuriiiiiiiiiiiiiiiiieiieinieeeessnineesssnsssees s sness s dbeas 257
VariantPut (Write VARIANT tag ValUE)uuueiiiiiriiiiiiiiiiiiiiinieeiesssnsnsessssnssnssssssnsnssssssdhees 258
CountOfElements (Get number of ARRAY €lements)coiiiiiiiinineeessndhes 259
LeQaCY INSIIUCTIONS ...ciiiieriiiiiiiiiiiiiiiiieeie sttt s st e st s s e s e e ssnsssnsssssdbns 260
FieldRead (Read field) and FieldWrite (Write field) inStructionsccccccnnnniin. 260
SCATTER .ottt e seees e s s seeesssees s seeesssssesnsnsesnndenss 262
SCATTER _BLK ..ttt et s e seessnsee e ssnessnsnsesnndenss 266
GATHER ..ttt e s e e e s s e e ssee s s sne e ssneesnsnsesnndenns 270
GATHER BLK ..ttt e e e s sn e e ssnessnsnessnndenss 275
CONVEISION ODEIALIONSvvveiiiinnnrneieiinnnnneiessnssseesssssssnsssssssssnsssssssssnsssssssnsssssssssnsssssssssnsssssihnss 280
CONV (CONVEIT VAIUE)eviiiiiiiiiiiiiiiiiieiessssseesssssssessssssssnsssssssssnssssssssnsssssssssnsssssssssnsssssihnss 280
Conversion INSITUCIONS fOr SCL......iuuuriiiiiiniiiiiiiiriieie e snneesssssnsnesssssssnesesssdbees 281
ROUND (Round numerical value) and TRUNC (Truncate numerical value)c........... 284
CEIL and FLOOR (Generate next higher and lower integer from floating-point number).....285
SCALE_X (Scale) and NORM_X (NOIMaliZE)cuuuiiiumrneiiiinnnniininnnnnnensnnnnensssssnnnssssssihess 286
Variant conversion iNStrUCHIONSoiuurriiiiniiiiiiiiiiiieinieeee s s nneesssssnnnesssssnnnesssssdbnes 288
VARIANT_TO_DB_ANY (Convert VARIANT 10 DB_ANY) ...oiiiiiiiiiiiniiiieiiniienessnninneessndhes 288
DB_ANY_TO_VARIANT (Convert DB_ANY {0 VARIANT)oocuuiiiiiniiiiiiiinieenessnnnneesssndhes 290
Program CONtrol OPEratioNSuuiiiurrriiiiiiniiiieiisineie s nnneesssssnsnsssssssnneesssssssnssssssnsnnssssdhnss 291
JMP (Jump if RLO = 1), JMPN (Jump if RLO = 0), and Label (Jump label) instructions291
JMP_LIST (Defin€ JUMD lIS) ... ueeiieiieiiiiieiiiiiieieeeee e snndenas 292
SWITCH (JUMD AISTADULON) ...ttt s s nnesssssssnsssssdbns 293
RET (REUIN) et e e e s e seessnseeessneensnsesnndenss 294
ENDIS_PW (Enable/disable CPU DASSWOIAS)uuuiiiurrneiiiinnnneiessnsnnnsssssssnnessssssnsnssssssihees 295
RE_TRIGR (Restart cycle monitoring tiMe)c.uermmiinnniinnessssneeessssnsnesssssdhes 297
STP (EXIT DIOGIAM) .eiiiirieiiiiinnsneiesssssneiesssssssssssssssssssssssssnsssssssssnsssssssssssssssssnsssssssssnsssssihnss 298
GET_ERROR and GET_ERROR_ID (Get error and error ID locally) instructions................ 299
RUNTIME (Measure program FUNTIMIE)uueisrrmeesnnnneeessssnneesssssssnsssssssssnssssssssnssssssdbess 302
SCL program control StatemMENESeuiiiuriiiii e nnee e dbes 304
Overview of SCL program control statements ... b 304
[F-THEN Stat@mMeENteeeiiiiiiiiiiiiiiiie sttt e s s e s ssnnndbess 305
CASE StateMENT.ueiiiiiiiiiiiiiiiiiii ittt e st e s st s e s nesesssnssnssessdbns 306
FOR SEAt@MENT ...tttk st e s s bne s s dbns 307
WHILE-DO StatemMentcouiiiiiiiiiiiiiiiiiiiiiiiiie i s s sseessssssnessssssnsnsssssdbnss 308
REPEAT-UNTIL StatemMentceeeiiiiiiiiiiiiiiiiiiii e s s s s s dbnas 309
CONTINUE StatemMENT......uuiiiiiiiiiiiiiiiiiiiieiinsieisess s ssssssneessssssnssssssssssesssssssnsssssssssnsssssdbnss 309
EXIT StatemMENT ...kttt n e dbns 310
GOTO STALEMENTtttk st e s st e s s s nneeesssssbne e s ssssnsssssssbnnsesssnssnsssssdhnss 311
RETURN StAt@MENT ...tttk s s s ssssnnns s e s dbns 311
WOrd 10QIC OPEIALIONSvvriiiiiiriniiiiiinineiessssreeeessssneeesssssnnessssssssnss s sssnessssssssnsssssssnsnsssssdhnss 312
AND, OR, and XOR logic operation iNStruCtiONSccouiiiiiiiuieiiiiiiiiiieeeeeieiiieieeeeeeeaa s 312
INV (Create 0nes COMPIEMENT)........uuiiiiiiiiniiiiiiiiniieiinineeiessssrneeesssssneessssssnnessssnsnesssssnntbess 312
DECO (Decode) and ENCO (Encode) inStruCtioNSuueiiiiimmmiiiinnieieninnineeesssnnnesssssihees 313
SEL (Select), MUX (Multiplex), and DEMUX (Demultiplex) instructionsc.ccccoeeennniin. 314
Shift @Nd FOLATE ...ttt s s s s bne e s dbns 317
SHR (Shift right) and SHL (Shift left) iNSIrUCIONS ..o s 317
ROR (Rotate right) and ROL (Rotate left) inStruCtions..........ccccocecininiiieneedeens 318

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 11

Table of contents

12

Extended iNSITUCHONSccoiimininccsnins s snnns s nsss s nns s mnns s s smnns s sne s snnns s ms s snnns s smnsssnnns s smnsssnnsenns 319
9.1 Date, time-of-day, and clock fuNCiONS ... 319
9.1.1 Date and time-of-day iNStrUCHIONSuuiiiiiiiiiiiiiiiii i essssnnnes e s dbes 319
9.1.2 ClOCK FUNCHIONS ..tttk ettt s e b 322
9.1.3 TimeTransformationRule data StruCtUre..........coiuiiiiiiiiee e b 324
9.1.4 SET_TIMEZONE (St iMEZONE)cciiuuiiiiuiiiiiiiiiiiiieeiiieeiieeeeeeesieesisee s e ssseessnseessnndenss 325
9.1.5 RTM (RUNEIME METEIS) ...tttk e s e s s dbes 326
9.2 SHNG AN ChAraCEr ...tttk ettt s s s e ssssnnnsssssdbes 328
9.2.1 SHNG A8 OVEIVIEW.....iiiiiiiiiiiiiiiiiiiiiieie skttt s s snns e s s dbes 328
9.2.2 S_MOVE (Move character StrNG)eeiereiiiiiinieeeeinisesesssnnnsesssssssssssssssssesssssdbess 329
9.2.3 String coNVErsion INSTIUCHIONSouiiiurrriiiiiiiiiiiiiniiiie s ss s bneesssssnsnesssssnsnnsssssdbess 329
9.2.3.1 S_CONV, STRG_VAL, and VAL_STRG (Convert to/from character string and number)

INSTIUCTIONS ...tttk ket et s b 329
9.2.3.2 Strg_TO_Chars and Chars_TO_Strg (Convert to/from character string and array of

CHAR) INSITUCHONS ...tttk s st s s e s s snnsssssdbns 338
9.2.3.3 ATH and HTA (Convert to/from ASCII string and hexadecimal number) instructions.......... 340
9.2.4 String operation INSTIUCHIONSuuiiiiiiiiiiiiiiiiiir e bnr e s s s snessssnsnnsssssdbess 341
9.24.1 MAX_LEN (Maximum length of a character String)cccoi e 342
9.24.2 LEN (Determine the length of a character String)......ccccciiii s 342
9.24.3 CONCAT (Combine character StriNGS)..........uueurmminnrneiiiisnnneiessssnnneesssssssessssssssnssssssihess 343
9.24.4 LEFT, RIGHT, and MID (Read substrings in a character string) instructionsc.......... 344
9.24.5 DELETE (Delete characters in a character String)ccccommnmiesssnneee s dhes 345
9.24.6 INSERT (Insert characters in a character String) ... snnndeens 346
9.24.7 REPLACE (Replace characters in a character string) ..o 347
9.24.8 FIND (Find characters in a character String) ... ssnnnee s dhes 348
9.2.5 RUNEIME INFOrMALION ..otttk s s s s dbes 349
9.2.5.1 GetSymbolName (Read out a tag on the input parameter).........cccccciieiiiiiideens 349
9.2.5.2 GetSymbolPath (Query composite global name of the input parameter assignment) 352
9.25.3 GetlnstanceName (Read out name of the block instance) ..ot 354
9.254 GetlnstancePath (Query composite global name of the block instance)cccceeeinniien. 356
9.25.5 GetBlockName (Read out name of the bIOCK)..........ciiiuiiiiiiin e e 358
9.3 Distributed 1/0 (PROFINET, PROFIBUS, OF AS=i) ...coiiuuiiiiiiiiiiiiiiiiiieiieeeiieeesiieesieeesnndnes 360
9.3.1 Distributed [/O INSrUCHIONSuuiiiiiiiiiiiieiiiiiieesn e s s s s s ssnsnesssssdbes 360
9.3.2 RDREC and WRREC (Read/write data reCord)cucuummmmnnnieiennnnneeesssnnnssssssihess 362
9.3.3 GETIO (Read DroCESS iMAGE). ...uuuiiiunrnniiiinnnneissinnnnnnesssssnnnssssssssnnssssssssnsssssssssnssssssssnnssssihess 365
9.34 SETIO (Transfer ProCeSS iMAaGUE)uuuuiiiiunrriiiiinnineisissnnnnsssssssnnessssssssnsssssssssnssssssssnssssssihess 366
9.3.5 GETIO_PART (Read proCess iMage @rea)c..uuueuissmneemsissnnnmsssssnnnssssssssnnssssssnsnsssssisess 367
9.3.6 SETIO_PART (Transfer process image ar€a)...........uuuurueeeiisnnnmessssnnnessssssnnnssssssnnnssssssisess 368
9.3.7 RALRM (RECEIVE INEITUDE) ..uetiieiiiiiiiiieiiiiieiessis et s s e s s e s ssss s snessssssnesssssdbess 369
9.3.8 D_ACT_DP (Enable/disable PROFINET 1O deVICES)........ccuiiiummmiiiiinnnnniniinnnnneessnnnnesssssihees 372
9.3.9 STATUS parameter for RDREC, WRREC, and RALRMccccccueeiiiiiiiiiiiiiiiiiieeeeeeee e 377
9.3.10 (0] (=Y £ TSSO PSS UR TSP S UPR T OPRRPPRRTPRRY ST 381
9.3.10.1 DPRD_DAT and DPWR_DAT (Read/write consistent data)cccococeeiinnniinnnenihe 381
9.3.10.2 RCVREC (I-device/l-slave receive data reCord). ... uuummmminnieieninnnneessssnsnssssssihess 384
9.3.10.3 PRVREC (I-device/l-slave make data record available)cccooniiiiciiiindeens 386
9.3.10.4 DPNRM_DG (Read diagnostic data from a PROFIBUS DP slave).......ccccccceeoiinieennnniien. 388
9.4 PROFIENEIQY ..otttk skttt et s st et e s s bnsse s dbns 390
9.5 INVEEITUDES ...tttk ettt e deean 392
9.5.1 ATTACH and DETACH (Attach/detach an OB and an interrupt event) instructions............. 392

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

9.5.2
9.5.2.1
9.5.2.2
9.5.3
9.5.3.1
9.5.3.2
9.5.3.3
9.5.34
9.54
9.5.5

9.6
9.6.1

9.7
9.7.1
9.7.2
9.7.3
9.7.4
9.7.5
9.7.6
9.7.7
9.7.71
9.7.8
9.7.8.1
9.7.9
9.7.10

9.8

9.8.1
9.8.2
9.8.3
9.8.4

9.9
9.9.1
9.9.1.1
9.9.1.2
9.9.1.3
9.9.14
9.9.2
9.9.2.1
9.9.2.2
9.9.2.3
9.9.24
9.9.2.5

9.10

9.10.1
9.10.2
9.10.3
9.10.4

9.11

CVClIC INEEITUDES ..tttk ekttt s s s s b 395
SET_CINT (Set cyclic interrupt parameters)c..uerrreinini e ssssneeessssnsnesssssdhees 395
QRY_CINT (Query cyclic interrupt Darameters) e i ssssseeesssnnneessssdbess 397
Time Of dAY INEITUDESueeiiiiiiiiiiiiiiiiiniie sttt s s e s s s s s sssnnsnsssssdbns 398
SET_TINTL (Set time of day interrupt)c.uuemrreiiiieiieinieeiessnrneesssssssnesssssnssesssssdhees 399
CAN_TINT (Cancel time of day interrupt)orriiiniei e ssnnnee s dhes 400
ACT_TINT (Activate time of day interrupt) ... dbes 401
QRY_TINT (Query status of time of day interrupt)ccceeomiiiee e 401
Time delay INTEITUDES .. .i.uiiiiiiiiiiiii ikt s s s s s s nnnnssessdbns 402
DIS_AIRT and EN_AIRT (Delay/enable execution of higher priority interrupts and

asynchronous error events) iNSIFUCLIONSuueiiriiiiiiinieeie e snee s ssnnnees s dbes 405
AALBIIITIS etttk ARt et b 406
Gen_UsrMsg (Generate user diagnostiC alarms)icuueinrmniieeeessnnaeeesssnnnesssssdhees 406
Diagnostics (PROFINET or PROFIBUS)ccoiiiiiiiiiiiiiiiiiiininiiessnineessssnnsessssssnssesssssdhes 408
DiagnOStiC INSIMUCTIONSvviiiiiiiiiiiiiiiiiiiiesi ekt s s s s sssssbnessssssnsnsssssdbns 408
RD_SINFO (Read current OB start information)cccceeomiiiiiieeeess e 409
LED (REAA LED STAtUS).....uuiiiiiiriiiiiiniiniiisisiieisessineesssnssnnesssssssssssssssssssssssssssnsssssssssnsssssdhess 418
Get_IM_Data (Read the identification and maintenance data)...........cccconiidinn. 419
Get_Name (Read the name of a PROFINET 10 devViCe).........ccooeiiimmnniiiiininiieiininneesnndeens 421
GetStationInfo (Read the IP or MAC address of a PROFINET IO device)ccceeennnniien. 427
DeviceStates INSIUCHION.o it n e s s s bneessssnnnnsssssdbns 436
DeviceStates example CONfIQUIatioNSc.uueiiirimiiiiieiinieeie s nrneesssssnneesssssnsnesesssdbees 437
ModuleStates INSITUCTIONoiuuriiiiiiiiiiiiiiii ket s s e s s bneessssnsnnssessdbns 440
ModuleStates example CONfIQUIAtioNSc.uueiinriniiiiiiiiiiniieie e ssnnnee s sssnnneee s dbes 442
GET_DIAG (Read diagnostic information)c.uemmrminienineessssnnesessssnsnesssssdhees 445
Diagnostic events for distributed 1/O ... b 451
PUISE .ttt ettt b 452
CTRL_PWM (Pulse width MOduIation)...........uummmmiiiiiniieiesnineesssnnnnesssssnsnesssssdbees 452
CTRL_PTO (Pulse train OUIPUL)uuueiiiiiniiiiiiiinieiiessnninesesssnness s snsnsssssssssnsssssssssssssssdhess 453
Operation oOf the PUISE OUIDULScoiuurriiiiiiiiiiiiiiiiiiiieeee e e s s snes s s dbeas 457
Configuring a pulse channel for PWM OF PTOuuiiiiiiiiiiiiieeessnsseeesssnsnsss s dheas 458
ReCiPDES and Data I0GSuuuiiiinriiiiiiiiiiiiieiinsieise st e s s sinessssssssnssssssssessssssssnsssssssssnsssssdhnss 463
RECIDES .tttk ettt et bttt b 463
RECIDE OVEIVIEW ...tttk sttt st e et e s sbnsse s dbns 463
RECIDE ©XAMIPIE ...ttt et e st e e s e e s s s bne s s dbns 464
Program instructions that transfer recipe dataccccociiiciiiiii e 467
RECIDE ©XAMPIE DIOGIAIM ..uviiiiitieiiiiiinineiessnssseeeessssneeessssnnnssessssssnsssssssnsssssssssnsssssssssnssssdhnss 470
DIALA OIS ..tttk ettt et b 473
Data 109 reCOrd StrUCTUIE.uiiuriiiiiiiriiiiiiitieiee sttt e s e s s nneesssnssbnnssssnnsnnsssssdbns 473
Program instructions that control data [09Sccccoiiriimi e e 474
WOorking With data l0GSueuiiiiiieiiiiiiiii et s s e s ssssnnnsss s dbns 488
Limit to the size of data [0 fil€Suuuiiiiuiiiiii e dbeas 489
Data 109 €XamPle DrOGIAMuvreiiinnnniiesnnsrieesssssnesesssssnnessssssssnsssssssnsssssssssnssssssssnnsssssdhnss 492
Data DIOCK CONTIOIviiiiiiiiiiiiiiiiiiiiiiieeiessi ekttt e s e s snnsse s dbns 497
CREATE_DB (Create data BIOCK)uuiiiiriiiiiiiiiiiieiiininiiessssenessnnnsesssssssnssssssnsnssssssdhess 497
READ_DBL and WRIT_DBL (Read/write a data block in load memory) instructions........... 501
ATTR_DB (Read data block attribute)coummmiiiiiiiieeee e ssnnnee s e 504
DELETE_DB (Delete data BIOCK)uuuiiiiriiiiiiiiiiiiiiiieiissssnsesesssssssssssssssnssssssssnesssssdhess 506
AAAreSS NANAINGuveiiiiiiiiii i s e snneesssssnsneessssssssesssssssnsssssssssnssssdhnss 507

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 13

Table of contents

10

14

9.11.1 GEO2LOG (Determine the hardware identifier from the SIot)ccooiieiiiiiiiiideen, 507
9.11.2 LOG2GEOQO (Determine the slot from the hardware identifier)ccooeoiiiiccdie. 509
9.11.3 IO2MOD (Determine the hardware identifier from an 1/0 address).........ccceeeiinneeeniiiinnntinns 510
9.11.4 RD_ADDR (Determine the 10 addresses from the hardware identifier).........ccccccceeennnien. 511
9.11.5 GEOADDR System data t¥Deuueiiiiiiiiiiiiiiiiiiiiinieiie s s ss s e s ssss s nnesssssssnnsesssdbes 512
9.12 Common error codes for the Extended inStructions ..o e 513
Technology INSTUCLIONS.........ciuririsneisssnrns s snnns s ness s sns s nnnsssnns s smnns s snssssnnnssssnssssnnns s mnsssnnns s mnsssnnsenns 515
10.1 Counting (High-Speed COUNTEIS)oiuuurriiiiiniiiiiiiinieiiesssnnneeeesssssneee s snsnsesssnsssnssssssssnnsesssdhess 515
10.1.1 CTRL_HSC_EXT (Control high-speed counter) inStructionc.ccenrnnnaihens 516
10.1.1.1 INSErUCHION OVEIVIEW ...tttk s e e s ssnesesssnndbess 516
10.1.1.2 EXAMIDIE itttk e b 517
10.1.1.3 CTRL_HSC_EXT Instruction System Data Types (SDT)coccurriiiminiiiininiieiinnnnnesssnihens 520
10.1.2 Operating the high-Speed COUNTET.........cuiiiiiiiiiiiiiiiiiiiiee i sssnnnnee s dbes 524
10.1.2.1 SyNchronization fFUNCHIONii.rreiiiiiii ik s e sssssnesssssdbes 524
10.1.2.2 GALE TUNCHION ..tttk ettt et s s dbns 525
10.1.2.3 CaPIUME FUNCHION ...tttk ettt s s snne s e s dbns 527
10.1.2.4 COMPAIE FUNCHION ...tttk sttt e st e e e s s ssns e e s dbns 528
10.1.2.5 AADDIICATIONS ...tttk sttt et s s b 528
10.1.3 Configuring a high-SpPeed COUNLETuuiiiiiriiiiiiiiiiiii i ss s e s s nnnesssssnnnnsesssdbes 529
10.1.3.1 TYDE OF COUNMTING ..tttk ettt s b s e s dbns 531
10.1.3.2 ODEIAtING DNASE. ...tttk e s st e s st e s s s ssne e s s s s sssssnneessnnssnsssssdbnss 531
10.1.3.3 INMIEIAI VAIUES .otttk ettt e st e e s dbess 535
10.1.3.4 INDUE FUNCHIONS ..tttk et et e s s e e nnndbens 536
10.1.3.5 OUEPUL FUNCHION 1.tttk s e s 536
10.1.3.6 INEEITUDE ©VENES ...tttk sttt e st e s s e esnnndbess 537
10.1.3.7 Hardware input Pin @SSIGNMENT.iuuriiiiiiiiiiiinii e s ne s ssssssnesssssnnnesesssdbees 538
10.1.3.8 Hardware output PiN @SSIGNMENTuuiiiiiiiiiiiiiiiiie e nne s ssnssnnesssssnnnesesssdbees 539
10.1.3.9 HSC iNpUt MEMOTY AIESSEScviiiuurrriiiinnnniiiiinnnneessssnnnnessssssnnesssssssnsssssssssnssssssssnnsssssdhess 540
10.1.3.10 Hardware identifierttt ssneesssss e s ssssssnesssssssnesssnnndbess 540
10.1.4 Legacy CTRL_HSC (Control high-speed counter) inStruction...........cccceonrminneennnnieens 541
10.1.4.1 INSErUCHION OVEIVIEW ...tttk e s e e s ssnnsesnsnsdbess 541
10.1.4.2 USING CTRL_HSC ...tttk ettt e s s s e s dbns 542
10.1.4.3 HSC CUrrent COUNE VAIUEcooiiiiiiiiiiiiiiiiieiiiiiiees st ss s s s e e s sssssnesssssdbes 543
10.2 PID CONEIOL ...tttk ettt s e s 543
10.2.1 Inserting the PID instruction and technology object...........cccieiiiimmiiiiiiiiiieisnnndins 545
10.2.2 (o | D @70 1's] o 7= To: AR O OO PSP EEERRR U UUPPPPPY (S 547
10.2.2.1 PID_Compact INSIrUCHON. ...ttt e e e e e s s s sssnnnsnnneeeeeesnas 547
10.2.2.2 PID_Compact instruction Process value limitS..........couuiiiiiiiiiiiiiiiiiiiiiiiieiiiieiiiiieeeeeeeaa s 550
10.2.2.3 PID_Compact instruction ErrorBit parameters ..o s 551
10.2.2.4 PID_Compact instruction Warning parametersccuuirimniiesnnneeesssnsnesssssdhess 553
10.2.3 PID _3StOD ..tttk e dbns 554
10.2.3.1 PID_3SteD INSTIUCHION . ..eiiiiiiiii ittt e e e s s s s eesesesssssssnssssssnsneneseianss 554
10.2.3.2 PID_3Step instruction ErrorBit parameters ..o b 561
10.2.3.3 PID_3Step instruction Warning parameters ... rruinin e sssnsesesssnsnssssssdhess 562
10.2.4 PID _TBIMID .ttt e et et e st e s et ea s se e s et e s neeensneesnndenn 564
10.2.4.1 PID_TemD iNSIIUCHON ...oiiiii ettt e e e e e eesssssnnsnssnnneeeeeianss 564
10.2.4.2 PID_Temp ErrorBit Darameters........oc.uueiiriiiiiiiniiesssnieeesssssese s snsnsesssssssnssssssssnssssssdhess 573
10.2.4.3 PID_Temp Warning ParamMeterS.uuuuuiuunriiiiinnineisssssnnessssssssnsssssssssnsesssssssnssssssssnssessibess 575
10.2.5 Configuring the PID_Compact and PID_3Step controllers..........cccocninnninnennnndeens 575
10.2.6 Configuring the PID_Temp CONIOIErocuuriiiiiiriiiiiiiiieieeinineessssnineesssssssnessssnssssssssdbees 578

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

10.2.7 Commissioning the PID_Compact and PID_3Step controllers...........coceonrninnnnnennnien 591
10.2.8 Commissioning the PID_Temp CONIOIEr........ciiurumiiiiiiiiiinieeiesnnineessssnsnnesssssnnnnessssdbes 593
10.3 MOLION CONEIOL. ..ttt st e s s s b 603
10.3.1 PRIASING itttk ettt b 608
10.3.2 Configuring @ PUISE GENETATONcuiiiuuiiiiiiiinniiiiiiisieeiessnnseeeessssssnss s snsnsesssssssnssssssssnnsssssdbnss 611
10.3.3 Open 100D MOLION CONEIOL....iiiiuiiriiiiiiiniiiieiiiieiee it e s e s s bneessssssbnesssssnnnnsssssdbnss 612
10.3.3.1 CoNfiGUING the @XIS ..oiiiuriiiiiiiiiiiiiiiiieii ekttt s s s nneessssssbnnssssssnsnsssssdbnss 612
10.3.3.2 COMIMUISSIONMING ket ettt s e s 616
10.3.4 Closed 100p MOLION CONEIOL.uuriiiiiiiriiiiiiiiiiiiie ittt s s snee s s s bnesssssnnnnsssssdbns 621
10.3.4.1 CoNfiGUING the @XIS ..oiiiuriiiiiiiiiiiiiiiiieii ekttt s s s nneessssssbnnssssssnsnsssssdbnss 621
10.3.4.2 SEIVOOBS ...tttk ekttt ettt ARttt b 627
10.3.4.3 Speed controlled OPEIatioNui i urrriiiiiniiiieisbreiessnnrne s sssnneesssnnnsesssssssnsessssnsnnsssssdhnss 629
10.3.4.4 TElEAraM 4 SUDDON ...eiiiieieieiiinntneiaessssneeesssssseeeessssseesssssssnesesssssnss s sssssessssssbnnssssssssnsssssdhnss 631
10.3.4.5 SIMUIATION XIS etttk s sttt et e e st e s s bnsse s dbns 636
10.3.4.6 Data adaptationei it st s dbns 638
10.3.4.7 Axis control using the TM Pulse MOAUIEcoiiuumiiiiiiiiiiiiiiiiiieee e ssnnnee s dbes 647
10.3.5 Configuring the TO_CommandTable_PTOccccouuiiiiiiiiiiiiiieeeeeeeeseeieeeeeeeeeea s 653
10.3.6 Operation of motion control for S7-1200ccurmmiiriiiinnie e snnnreeesssnsneeessdbees 657
10.3.6.1 CPU outputs used for Motion CONIOLouuueinriiiiiiiiieiieiniieiesssnrneesssssnnnesssssnnnesesssdbees 657
10.3.6.2 Hardware and software limit switches for motion control...........cccociiiciideens 659
10.3.6.3 HOMUING ¢tttk et s b 669
10.3.6.4 JEIK I Lttt et e s e e e e sn e e s nneesnsneesnndenn 676
10.3.7 Motion CONtrol INSTIUCHIONSiiuvriiiiiiiiiiiiiiiiiiie ikt s s s e s sssnnnnsss s dbnas 676
10.3.7.1 MC iNSLrUCHION OVEIVIEWeiiiiiiiiiiiiiiiiiiiessssseeeesssbaeeessssssnessssssssnssssssssnsssssssssnssssssnsnnsssssdhnss 676
10.3.7.2 MC_Power (Release/bIOCK @XIS)i.uuuuiiiiiumnniiiiinniniisiinnnneenssssnsessssssssnsesssssssnssssssssnnssssihess 678
10.3.7.3 MC_ReSEt (CONFIrM ©ITOI) ..ciiiiiiiiiiiiiiiiieiesnsieiee s bneee s snneesssssssnsssssssnsesssssssnssssssnsnnsssssdhnss 680
10.3.7.4 MC_HOME (HOME @XIS)tveiiiiunnrniiiiinnnineiessnssneessssssneesssssssnessssssssnsssssssnsssssssssnsssssssssnsssssihnss 682
10.3.7.5 MC_Halt (PAUSE GXIS) ...uvrreiiiinnrniiiiiininiiesinssieesessssseessssssnnsssssssssnsssssssssssssssssnsssssssssnssssdhnss 685
10.3.7.6 MC_MoveAbsolute (Position axis abSOIULEIV)uuuiiiirineiiiiiiiiiiiinieee e e 687
10.3.7.7 MC_MoveRelative (Position axis relatively)uriiieeesneeessnnness s dhes 689
10.3.7.8 MC_MoveVelocity (Move axis at predefined VEIOCITY)coimrmiiiiiiiieiiieeeeesdeens 691
10.3.7.9 MC_MoveJog (Move axis in jOd MOAE)uuuuiiiimnumiiiiinnnneieninnnnessssssnnnesssssssnnssssssssnsssssihess 694
10.3.7.10 MC_CommandTable (Run axis commans as movement SEQUENCE)ceueiiurrreemmisnnnntinss 696
10.3.7.11 MC_ChangeDynamic (Change dynamc settings for the axis).........ccccooirmniinncnnndin. 698
10.3.7.12 MC_WriteParam (write parameters of a technology object)...........ccccceiinniiiiicnnndinn. 700
10.3.7.13 MC_ReadParam instruction (read parameters of a technology object)ccceeeiinnniinn. 702
10.3.8 Monitoring active COMMEANGSoiiiiurriiiiiiiiiiiieinnineiesssnnnneeessssssnee s ssnnsesssssssnssssssnnnnsssssdbnss 703
10.3.8.1 Monitoring MC instructions with a "Done" output parameter...........coceeininnnennnihens 703
10.3.8.2 Monitoring the MC_VelOCItYciiiiiiiiiiiiiiiiiiiiiiieii e nsneesssssssnesssssnsnnsssssdbes 707
10.3.8.3 Monitoring the MC_MOVEJOQcuiiiiiiiiiiiiiiiiiiiiiinieiiesssnneeeessssssess s sssnsesssssssnsssssssssnsssssdbess 711
10.3.9 ErrorIDs and ErrorInfos for motion CONTroluueiiriiiii e dbeas 714
11 COMMUNICALION.temressiesssiessesssnsssinsss s ssnnssmnesnsssmessssessmesssnssssssssssasssnns nsassnessmssssnsssssssssssasnsssnnsnnnatbans 739
11.1 Asynchronous communication CONNECLIONSoiururiiiiiirieiiiiinineiesssnrneessssnnneesssssnsnssssssdhees 740
11.2 PROFINET ...ttt ettt e s st e s seees s e sssnsesssnessnsesesssssesnsnsssnsdenas 743
11.2.1 Creating @ Network CONNECHION........iiuriiiiiiiiiiiiiiiiiiie e n s s sssnnneessssnnnesssssdbes 745
11.2.2 Configuring the Local/Partner connection pathccceeiiii e 745
11.2.3 Assigning Internet Protocol (IP) addreSSeS.... .. ruriiinrieiiiiinineiessnnineessssnnnessssssnsnssssssihess 748
11.2.3.1 Assigning IP addresses to programming and network deviCes..........ccceovirrneiiiinnnneensiihnns 748
11.2.3.2 Checking the IP address of your programming deVICEccueeiiiinnmnmiemisnnnnneesssnnnnesssssihees 750
11.2.3.3 Assigning an |P address 10 @ CPU ONlINEciiiiiiiiiiiii e b 751

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 15

Table of contents

16

11.2.3.4
11.2.4
11.2.5
11.2.6
11.2.7
11.2.8
11.2.8.1
11.2.8.2
11.2.8.3
11.2.8.4
11.2.8.5
11.2.8.6
11.2.8.7
11.2.8.8
11.2.8.9
11.2.8.10
11.2.8.11
11.2.8.12
11.2.8.13
11.2.8.14
11.2.8.15
11.2.8.16
11.2.8.17
11.2.8.18
11.2.9
11.2.9.1
11.2.9.2
11.2.9.3
11.2.9.4
11.2.10
11.2.10.1
11.2.11
11.2.11.1
11.2.11.2
11.2.11.3
11.2.12
11.2.12.1
11.2.12.2
11.2.12.3
11.2.12.4
11.2.13
11.2.13.1
11.2.13.2
11.2.13.3
11.2.13.4
11.2.13.5
11.2.14
11.2.14.1
11.2.14.2
11.2.14.3
11.2.15
11.2.15.1

Configuring an IP address for a CPU in yOUr PrOJECEcuuiiurmmiiiiinnneieninnnnneesssnnnssssssihees 752
Testing the PROFINET NEIWOIK.i.uuriiiiiiiiiiiiiiiniiiieisiiieeeesssssese s nsnsesssssssnessssssssssssssdbess 756
Locating the Ethernet (MAC) address on the CPUcccoiminiiniiieeesssnnneeesssdhes 757
Configuring Network Time Protocol (NTP) synchronization........cc.. e 759
PROFINET device start-up time, naming, and address assignment...........ccocoonreenniie. 760
OpEN USEr COMMUINMICATION .iiiiurtriiieinniiniiesnssieeessssssneessssssnnssssssssnnssssssssnsssssssssnssssssssnnsssssdhess 761
PrOTOCOIS ...tttk sttt ettt s s b 761
TCP and ISO ON TCP....uiiiiiieiiiieiiiee ittt e sssee s s e sssseeessseesssessssssssnsnssssndonss 762
Communication services and used POrt NUMDErScuuueiiimimiiiiniieee e dhes 763
A NOC MOGE .tttk e sttt sttt et s s e s dbns 764
Connection IDs for the Open user communication inStructionsccccooeiicuvenneeeeeennnndn. 764
Parameters for the PROFINET CONNECHONccoiiuuuiiiiiiiiiiiiiiiniiiiessnnnieeessssnneessssnnnssssssdbes 766
ConfiGUIING DINS ...tttk st e e e e s s se s dbns 772
TSEND_C and TRCV_C iNStrUCONS ...vvvuusiiiiirrsseiissessssnssssseessssssssssssssssssssesssssssssssessssssssiones 773
Legacy TSEND_C and TRCV_C iNStrUCONS........uuuuiiiiiiiiiiiiiiiiiiiiiieeeieeeeesssssssssneeeeeeeeaesnss 786
TCON, TDISCON, TSEND, and TRCV iNStruCtiONS.........cocuviiieiiiiiiiiiiieiiieeeiiieeiieeesnndns 792
Legacy TCON, TDISCON, TSEND, and TRCV inStructionscccccceeiiiiiiinnennneeenennaadnn 803
T_RESET (Terminate and re-establish an existing connection) instruction............cccc...lhe.. 812
T_DIAG (Checks the status of connection and reads information) instruction.................... 814
TMAIL_C (Send an email using the Ethernet interface of the CPU) instruction................... 817
U D P e e ettt e As ARt AA et e A et A Rn e s nne e A snneanndenns 836
TUSEND and TURCY ..ot s esmseesssssssssssessnndonss 836
T_CONFIG ettt et ees e sss s esssees s seeesssnesnsnsesnndenss 841
Common parameters for iINSITUCHIONSoiiuuriiiiiiiein e snnnes e s dbes 852
Communication with a programming AEVICEuuuuiiiurueiiiinniniiiinnnneiessssnnneeesssnnnssesssdbees 853
Establishing the hardware communications CONNECLONccueiiiiinineiiiiniiiieiinnieee e 853
Configuring the AEVICES......uuiiiiiiiiiiiiiiiiiii ittt e s s s e s ssss s bnesssssnsnnsssssdbees 854
Assigning Internet Protocol (IP) addreSSeS.......uiiuruuiiiirrieiiiinnineiesnnnnnsssssssnnessssssnnnssssssihess 855
Testing your PROFINET NEWOIK........uuuiiiiiiiiiiiiiiiiiiiiiiieieesssssese s nnneesssnssssssssssssnssssssdhess 855
HMI-t0-PLC COMMUNICATIONtttiiiiiiiiiiiieiiieiiessss et s s s s s mees s s snesssssnssnsssssdbess 855
Configuring logical network connections between two devicesccccoinriiiinneniidien. 856
PLC-t0-PLC COMMUNICALION. ... ttveiiiiiiiiiiiiiniiiisssnssneessssssneesssssssnessssssssnsssssssssnssssssssnnsssssdhess 857
Configuring logical network connections between two devicesccccoinriiiinneniidien. 858
Configuring the Local/Partner connection path between two devices..........cccocviineeennniin. 858
Configuring transmit (send) and receive Parameters ..o ssnnnneessssdhees 858
Configuring @ CPU and PROFINET O deVICe........uuuiiiiuiieiiiiiniiiiiinnnieiessnnsnesesssnnnsessssdhees 861
Adding a8 PROFINET 1O dEVICE......uuuiiiiiiiiuiiiiiiiiiiiieeesieee e sieesieee s e sssnessnsseessnndonss 861
Assigning CPUS and deVICE NAMIEScouuiuuumiiiiinnnnniiiinnnneisssssnnessssssssnsssssssssnssssssssnssssssihess 862
Assigning Internet Protocol (IP) addreSSeS.......ouiuurriiiiinrieiiiinnnneiesnnnnneesssssnsessssssnsnssssssihess 863
Configuring the 10 CYCIE HIMEuviiiiiiiiiiiiiiiiiiiii e n e s snes s s dbeas 863
Configuring @ CPU and PROFINET [-d@VICEc.cuuuiiiiuurieiiiiininiiiinnieiessnnnnenesssnnnssssssdhees 864
[-deVice FUNCHONAITYueeiiiiriiiiiii ittt s e s s ssnnesssnnndbess 864
Properties and advantages of the 1-deViCe..........ocuiiiiiiii e s 865
CharacteristiCs Of an [-dEVICEuuiiiuuiriiiiiiiiiiiiiiiiiie e ss s bneesssssssnesssssnsnnsssssdbess 866
Data exchange between higher- and lower-level 1O System.......ccccciiiiiiiiiindeens 868
Configuring the 1-dEVICEoiiuriiiiiiiiiiiiiiii e e s s e s sssnsnesssssdbes 871
SNArEA AEVICES ...tttk e st e s st e e bt e e et e s s sbnssessdbns 873
Shared device fUNCHONAIILYuueiiiiiriiiiiiiiiiiiiiin i sbneessssssnnesssssnnnesssssdbees 873
Example: Configuring a shared device (GSD configuration)........c.c..ccrrnnadhens 876
Example: Configuring an |-device as a shared deviceccccuueeeeeeeiieiiiiiiiiiiiieieeeeea e 881
Media Redundancy ProtoCOI (MRP).......cuuiuuuuiiiiiiiiiiiiiiiiiiiinieeiesssnnnsessssnsnessssssnsnssssssdbess 890
Media redundancy with ring tOPOIOGIESuuueiiiiiriiiiiiiiiiiiiiniieee e snn e dbeas 891

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

11.2.15.2
11.2.15.3
11.2.16
11.2.16.1
11.2.16.2
11.2.17
11.2.17.1
11.2.18
11.2.19
11.2.20
11.2.21

11.3
11.3.1
11.3.2
11.3.3
11.3.3.1
11.3.3.2
11.3.3.3
11.3.4
11.3.5
11.3.6

11.4
11.4.1
11.4.1.1
11.4.1.2
11.4.1.3
11.4.1.4
11.4.2
11.4.2.1
11.4.2.2
11.4.3
11.4.4

11.5
11.5.1
11.5.2
11.5.3
11.5.4
11.5.4.1
11.5.4.2

11.6

11.7
11.7.1
11.7.1.1
11.7.1.2
11.7.2
11.7.2.1
11.7.2.2
11.7.2.3
11.7.3
11.7.3.1

Using Media Redundancy Protocol (MRP)ocuuummmmininiinnineesssnnnesssssnsnesssssdhees 892
Configuring Media redUNAANCYoiuurriiiiniiiiiiiinieeiessnnnee e sssnneee s ssnnsesssssssnssssssssnesssssdbess 895
ST TOULING ekttt ettt et e s b 898
S7 routing between CPU and CP interfacescciurueininiiiinnesssnsnesessssnnnssssssdhees 899
S7 routing between two CP interfaces ... ssssnieessssnsness s dbes 900
DiSAbING SNIMP ..okttt esss e e sseesnseeessseessnsnsesnndenss 900
DiSAbING SNIMP ..okttt esss e e sseesnseeessseessnsnsesnndenss 901
DIAGNOSTICS . .tttk ekttt sttt et b 903
Distributed [/O iNSTIUCHIONSi..vrieiiiiiiiiiiiiiiiiiie i e s s nneesssssssnnessssnssnsssssdbnes 903
DiagnOStiC INSIIUCTIONSvvviiiiiiiiiiiiiiiiieie skttt s s nneessssssnesssssnnsnssessdbns 903
Diagnostic events for distributed 1/O ... b 903
PROFIBUS ...ttt e s e e e s s sesessseessnsneessssessnsnsssnndenss 903
Communications services of the PROFIBUS CMScuueiiimiiniiinnineeesssnnnesssssdhees 905
Reference to the PROFIBUS CM USEr Manualsccuueimmimnnnieeinnneenesssnnnesssssdhees 905
Configuring a DP master and SIave deVICecuuriiiiniiiiiiiiiieiiiiieessssnnneeesssnnnsss s dbes 906
Adding the CM 1243-5 (DP master) module and a DP slave...........cccceoinininnennnnnden. 906
Configuring logical network connections between two PROFIBUS devices..........cccc...he.. 906
Assigning PROFIBUS addresses to the CM 1243-5 module and DP slave........cccccc.....l.... 907
Distributed [/O iNSTIUCHIONSi..vrieiiiiiiiiiiiiiiiiiie i e s s nneesssssssnnessssnssnsssssdbnes 908
DiagnNOStiC INSIIUCTIONSvviiiiiiiiiiiiiiiiiiiiessk et e s s s e s sssssbnessssssnsnsssssdbnss 908
Diagnostic events for distributedciiiiiiiii s 909
A S i ettt Attt oAt ARt AR et ARt AA et e A Ret A et e A nne e A sneesnndenns 909
Configuring an AS-i master and Slave deVICEeciuiuiiiii i ssnnnee s dbes 910
Adding the AS-i master CM 1243-2 and AS-i SIAVecciiimnmiiiiiiiiiiieiniieiesssnnnsee s dhes 910
Configuring logical network connections between two AS-i devices...........cocceuveneeeeeenncilinn. 911
Configuring the properties of the AS-i master CM1243-2ccccoiinneiiiiiiiieiiinineeesnndees 911
Assigning an AS-i address 10 an AS-i SIAVE........ccuuriiiiiii b 912
Exchanging data between the user program and AS-i SIAVeScccceoiininiiiinnnnnnnnsiin 914
STEP 7 basic CONfIQUIatioNuuuiiiiiiiiiiiiiiiiiii i s s sneessssssbnnessssnnnnsssssdhnes 914
Configuring s1aves With STEP 7uuuiiiiiiiiiiiieeiesssineeesssssneesssssssnesssssssnesssssdbees 916
Distributed [/O iNSTIUCHIONSeiiiiiiiiniiiieiiiiiiieis i e s s s e s s s snnessssnssnsssssdbnss 918
Working With AS-i ONlINE f00IS......ciiiiiiiiiiiiiiiiiiiiiiiiiii e n e s sssnnneessssnnnnessssdbns 918
ST COMMUNICATION ...tttk et e st e e e e snsssnssessdbns 920
GET and PUT (Read and write from a remote CPU)ccccciiiiiiniiiiiiieininneess e 920
Creating an S7 CONNECHIONuuueiiiiiiiiieiiirieee st e sbne e s snnnssssssssnsesssssssnssssssnsnnsssssdhnss 924
Configuring the Local/Partner connection path between two devices...........ccccccuveeeeeennc i, 925
GET/PUT connection parameter asSignmeNtcurrennmnnnnineessnsnneeessssssnssssssihess 925
CONNECHION PAIAMETEISuviiiiiiiiiiiiiiiiiiiie itttk e st e e s s sbne s s ssnneessssssbnnssssssnsnsssssdhnss 926
Configuring @ CPU-t0-CPU S7 CONNECHONcoiiiuriiiiiiiiiiiiiiiininiiessnninesssssnsnessssssnsnssssssdhess 928
What to do when you cannot access the CPU by the IP address.........ccccociiieiinnennninniinn. 933
OPC UA SEIVETetiiiiiiiiiiieieiittieteesssssstees s s ss s s ssssssss s snete s ss s e s bt e e s st e sssnsbnssessdbns 934
OPC UA server CONfIQUIAtiONuuuii i urrriiiinniiiieissieeiessssnnssssssssnsssssssnsssssssssnssssssssnnssssdhess 934
Activating the OPC UA SEIVETcuiiiiiiiiiiiiiiiiiiiinnsneiessssnnnssssssssssssssssssnsssssssssnsssssssssnsssssihess 934
Settings for the OPC UA SEIVETouuuiiiiiiiiiiiiiiiniiiiessnsnnnesssssssssssssssssnsssssssssnssssssssnssssssibess 934
OPC UA SEIVET SECUIMLY ...vvviiiiunnrniiiiinnnnneisssnnsnnesssssssnsssssssssnsssssssssnssssssssnsssssssssnssssssssnnsssssihnss 935
Supported SECUNLY POIICIES ...ii.uvrreiiiiiiniiiiiisiiiie s beeeesssnnneeesssnnnse s ssnneesssssssnnsssssnsnnsssssdhnss 935
TTUSTEA ClIENES ..tttk et s s s s dbns 935
User aUtNENTICATION ...viiiiiiiiiiiiiiiiii itttk s s s e s nssnees s dbns 936
OPC UA SEIrVer iNTEIACE. .. ciiiiurriiiiiiiiiiiiiiiiiiieee it ss e s s s e s sssssbnnssssnnsnnsssssdbns 936
SUPPOrted data tYDES ..ueeeeiiiiiiiiiie itttk e s sn s s s s bnee e s nnnnese s dbns 936

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 17

Table of contents

12

18

11.7.3.2
11.7.3.3

Web server
12.1
12.2
12.3
12.4
12.5
12.6

12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.7.6
12.7.7
12.7.8
12.7.9
12.7.10
12.7.11
12.7.12
12.7.13
12.7.14
12.7.15
12.7.16

12.8
12.8.1
12.8.2
12.8.2.1
12.8.2.2
12.8.2.3
12.8.2.4
12.8.2.5
12.8.2.6
12.8.2.7
12.8.2.8
12.8.2.9
12.8.2.10
12.8.2.11
12.8.3
12.8.4
12.8.5
12.8.6
12.8.7
12.8.8
12.8.9
12.8.9.1

PLC repreSENtatioNuueiiiiiiiiiiiiiiiieiiessssieeee s snees s ssnessssssssnsssssssnsesssssssnssssssnssnsssssdhess 937
Downloadable server iNterfaCes........cuuiiriiiiienieeee e sssn s s dbeas 938
... 939
ENabling the WED SEIVEr........icuuuiiiiiiiiiiiii i n s s snes s s dbes 942
Configuring WED SEIVEr USEIS......cuiiiuuuriiiiiiniiiiiiinnineiessssnnnssssssssssssssssssnsssssssssnssssssssnnssssihess 943
Accessing the Web pages from @ PC ... b 944
Accessing the Web pages from a mobile deviCecccecoiniiiiiiinieeee e 946
Using a CP module to access Web Pages ... ssnnness s dheas 947
Downloading and installing a security certificate..........ocoiveiii e 948
Standard WED DAGESuuuiiiiiiiiiiiiiiiiiiieiisieiee st e s s snnessssssssnss s s snsssssssssnssssssssnnsssssdhess 950
Layout of the standard Web pages ... dbes 950
BaASIC DATES ...tttk ikttt e sttt Rt b 951
Logging in and USEr DIAVIIEUEScoiiiuuurriiiiiniiiiiiinniniiessnnnnnessssssssessssssnnsssssssssnssssssnsnnssssdhess 951
IVErOTUCTION Ltttk ettt et e s deean 954
5] 2= S OSSO SRS U ST PR PU RS UR R OPRRRURRTPPRY S 955
DIAGNOSTICS ..tttk ettt 956
DIia@NOSHIC BUFFEI ...tttk ettt e s snns s e s dbns 958
MOAUIE TNFOIMEALION ..tttk s s e s ssnssessdbes 959
COMMIUNICALION .tttk sttt et s s s s s 963
TG STALUS .tttk ekttt st 966
WatCH tADIES ..otttk et dbes 968
ONINE DACKUD .tttk ettt s s s s dbns 970
Data LOGS PAEuuiiiiiiiiiiiiiiiiiiiie itttk st s s snne s s dbns 971
USEI FIlES .tttk ekttt ettt s b 974
Data Lo USEIFIlES APLL... ..ottt ssssssssss s s snsesssssssnssssssssnnsssssdhess 978
FlE BIrOWSE ...tttk ekttt ettt e st s s s 978
User-defined WEeD DAgesocuuuiiiiiiiiiiiiiiiiess e e s s s s sssssnes s s dbeas 980
Creating HTIML DAGESuueiiiiiiiiiiiiiiiiieiiessisieee s st e s s s s s sssnsssssssssesssnsssnssssssssnnsssssdhess 981
AWP commands supported by the S7-1200 Web Server..........cccoiciniinieneessdees 982
Reading VariabIesc.uuimmiiiiiiiieiieis e n s nnnes s nnnne s s dbes 983
WWIItING VATTADIES ...tttk ettt e s s ssns e e s dbns 984
Reading Special Variablesuuuumiiiiiiiiiisiieiesss s sssssess s sssnsesssssssnssssssssnnssssdhess 986
Writing Special Variables ... e sssnnnes s s dbes 988
Using an alias for a variable reference.............ccccoociiiiiiiiiiiiiiii 989
DefiNiNg €NUM TVDES .otttk e st e s s s s s snesessssssnnsssssnsnnsssssdhnss 990
Referencing CPU variables with an enum type........ccccuuiiniiiiieeessninee s e 990
Creating fragMENTS.otttk s st e s sbne s s s sneessssssbneessssnssnsssssdhnss 992
IMPOrtiNg fFrAGMENTSeeeiiiiiiiiiii ittt s et s s s ssneessssssnnsssssnnndbess 993
CombiNING AEfiNItIONSvriiiiiiiiiiiiiiiiiieie skt e s s s s sneeessssssnesssssnnnnsssssdbess 993
Handling tag names that contain special characters............ccocccooiciiiiiiiiiiiiiie s 994
Configuring use of user-defined Web pages..........cccocceeiineiiiiiiiiiiiiieiceeee s 995
Configuring the ENtrY PAGEuuriiiiiiiiii et n e s s bneessssnsnnsssssdbes 997
Programming the WWW instruction for user-defined web pagesccccocceeiiiinnnnenniiien. 997
Downloading the program blocks t0 the CPUccooiiiiiiiiiiieeessieee e s 999
Accessing the user-defined Web pages..........ccoiiiiiiiiii s e 999
Constraints specific to user-defined Web pages..........ccovvciiiiiiiieeee e 1000
Example of a user-defined Web DAQE.........cuuuiiiiiiiiiiiiiiiiiiiiieie e ssssnnes s 1001
Web page for monitoring and controlling a wind turbineccccccceieeeiiiiiiiiiiiiiiieeeeeee e 1001

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

12.8.9.2 Reading and displaying controller data ... ssnnies 1003
12.8.9.3 USING @N ENUM TYDE itttk ss st esssss st s sss e s s bnee s s s s bnessssnssnnsssssnnths 1003
12.8.9.4 Writing user input {0 the CONLrOIENcooiiiiriiiiiiiii e snnses 1004
12.8.9.5 Writing @ Special Variable ..o nnne s ssnnnesesssnnths 1005
12.8.9.6 Reference: HTML listing of remote wind turbine monitor Web page...........ccccoiiennnnnihe 1006
12.8.9.7 Configuration in STEP 7 of the example Web page........ccccciiiiiiiiiieneesnnnniks 1010
12.8.10 Setting up user-defined Web pages in multiple languages...........cccceeeiiiinniinncnnnnnnnihe 1011
12.8.10.1 Creating the folder StrUCIUE.oiiuuuiiiiiiiiiiiiiii e snsneeessnntes 1011
12.8.10.2 Programming the 1anguage SWItChccuuuiiimiiiiiinieie s snnneesssnntes 1012
12.8.10.3 Configuring STEP 7 to use a multi-language page Structurecccecviinniiineenenninnnihe 1014
12.8.11 Advanced user-defined Web page CONrOl........oiiuriniiiiiiiiinee e ssssnnne s sssnnnes 1014
12.9 CONSIIAINES ...tttk ekttt b8 ettt et eesnndes 1018
12.9.1 USE OFf JAVASCIIDE ...tttk et s st e s nnne e s s nntes 1019
12.9.2 Feature restrictions when the Internet options do not allow cookies..........cccccoiinnniinnnihe 1019
12.9.3 Rules for entering tag names and ValUEs............ccoiiireiiiiiiiiiiiineeessnnneessssnnsnssssssnnses 1019
12.9.4 Importing CSV format data logs to non-USA/UK versions of Microsoft Excel..................\. 1020
13 Communication processor and Modbus TCP..........cocuurminmismeisnessesssnesssnssssnsssnnsssssssnsssmsssmessssssssssies 1021
13.1 Using the serial communication iNterfaces..........cocoiiiriiii e snnies 1021
13.2 Biasing and terminating an RS485 network connectorccccoieiiiiiinnnhe 1022
13.3 Point-to-point (PtP) COMMUNICALIONoiiiiiiiiiiiiiiiiiiiiiiiiiiiiieee e ne s snnnnes 1023
13.3.1 PP, Freeport COMMUNICAtION........uuuiiiiiiiiiiiiieiiieiieiee ettt e e e e s s sssssnnenseeeeeeeeeas 1024
13.3.2 3964 (R) COMMUNICATION ...tttk sisbeeee skt eessss e s sssssnesssssbnnesssssssnssssssnsnssssssnnths 1026
13.3.3 Configuring the PtP Freeport communiCationccccueiimmniiiniieee s ssnnnses 1027
13.3.3.1 Managing flOW CONTIOL......uuuiiiiiiiiiiiiiiiiie ikt s sk s s e s sssnsnesssssnntes 1029
13.3.3.2 Configuring transmit (send) PAramMeEters. ... e snnne e sssnnses 1030
13.3.3.3 Configuring reCeive ParamMeEters c.uue st ss e e s snnessssssnsnessssssnths 1031
13.3.4 Configuring 3964(R) COMMUNICAION....cciiiiirriiiiiiniiiiiiiinieiie b ssnrneeesssnneessssnnsnsesssssnths 1038
13.3.4.1 Configuring the 3964(R) communication POMS........cooiirreiiiiiniieiiiinieeeinreeeessnnnneeesssnnses 1038
13.3.4.2 Configuring the 3964(R) priority and protocol parameterscccceciiininninnennnnnnihe 1040
13.3.5 PoiNt-t0-poiNt iNSTTUCHIONS ...tttk nnne s nnesesssnntes 1041
13.3.5.1 Common parameters for Point-to-Point instructionscccceecoiciinnnhe 1041
13.3.5.2 Port_Config (Configure communication parameters dynamically)c.coeeeeiiinnenennnnnnihe 1043
13.3.5.3 Send_Config (Configure serial transmission parameters dynamically)........ccccccceeeinnnnihe 1046
13.3.5.4 Receive_Config (Configure serial receive parameters dvnamically).........cccccoiiineeneiinnnnihe 1048
13.3.5.5 P3964_Config (Configuring the 3964(R) ProtoCOI)uueiiiiimrmiiiiiiieiiiiinieeeessnnnneeessnnnses 1052
13.3.5.6 Send_P2P (Transmit send buffer data).........cooi e 1054
13.3.5.7 Receive_P2P (Enable receive MeSSages) ... iurriiiiiiriiiiiiniiiieiinnnnesesssnnnessssssnsnsssssssnies 1057
13.3.5.8 Receive_Reset (Delete receive BUfer)ccco i sssnnies 1059
13.3.5.9 Signal_Get (Query RS-232 SIiGNQAIS)ouiiiiurmiiiiiniiiiiiinieieesinsneesssssssnssssssssessssssssnsssssssntes 1060
13.3.5.10 Signal_Set (Set RS-232 SiGNQAIS)uuuuiiiinniniiiiinniiiininnneiesssnnneessssnsssssssssssessssssssnsssssssntes 1061
13.3.5.11 T B LT L ([(Y AT 1062
13.3.5.12 St FEAtUINES ..uuiiiiiirreiiiieerseeseesessesessssssssssssssssssssssssssssssssssssensssssssssssnssnsssssensnssssssssnnsstns 1063
13.3.6 Programming the PtP communiCationscoiiurriiiiiiiiie i snnneeesssnnnes 1064
13.3.6.1 POIlNG ArChItECIUIE. ... itttk ss e nnnsesssnntes 1065
13.3.7 Example: Point-to-Point commuNiCatioNnoiiueiiiriiieiiineee e ssssnnneessssnnses 1066
13.3.7.1 Configuring the communication MOAUIE.........oiiiuiiiii e sssnnies 1067
13.3.7.2 RS422 and RS485 operating MOUESoiuueiiiiiiiiiiiiiiiiiieiisieeeesssssnessssssssessssssnsnsssssssnths 1069
13.3.7.3 Programming the STEP 7 Drogram e nnessssssnsssssssnses 1072
13.3.7.4 Configuring the terminal emMUIator snnies 1073
13.3.7.5 Running the example DrOGram c.uue e snreee s ssssseesssssssnesssssssessssssnsssssssssnths 1073

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 19

Table of contents

20

13.4
13.4.1
13.4.2
13.4.3
13.4.3.1
13.4.3.2
13.4.3.3
13.4.3.4
13.4.4
13.4.5
13.4.6

13.5
13.5.1
13.5.2
13.5.2.1
13.5.2.2
13.5.2.3
13.5.2.4
13.5.3
13.5.3.1
13.5.3.2
13.5.3.3
13.5.3.4
13.5.3.5

13.6
13.6.1
13.6.1.1
13.6.1.2
13.6.1.3
13.6.1.4
13.6.1.5
13.6.1.6
13.6.1.7
13.6.1.8

13.7
13.7.1
13.7.2
13.7.3
13.7.3.1
13.7.3.2
13.7.3.3
13.7.3.4
13.7.4
13.7.5

13.8
13.8.1
13.8.2
13.8.3
13.8.3.1
13.8.3.2

Universal serial interface (USS) cOmMmUNICAtIoNcooiirruiiininiiiiiiniieninineiesssnnneesssniee 1074
Selecting the version of the USS inStructions ..o e 1076
Requirements for using the USS protoCol.........uuuueiriiiiiiieiieinieeeesnneeesssssssness s 1077
USS INSEUCHIONStttk ss st e st e e ssbnneessssnnsessadee 1079
USS_Port_Scan (Edit communication using USS network) ... 1079
USS_Drive_Control (Swap data With drivVe)........ccueiimiiiiiiniinneeeessnnnees s e 1081
USS_Read_Param (Readout parameters from the drive)..........ccoociniiininih 1083
USS_Write_Param (Change parameters in the drive) ... 1084
USS StAtUS COUBSuuiiiiiiiiiiiiiiniiiieiis it sss e ee s sseesssssssneesssssssnsssssssssessssssssnssssssssnnsssssdes 1086
USS general drive Setup reQUIrEMENTSuuveiiiinrreiiiinnnieiesisninneesssnsnesssssnssessssssssnssssssies 1088
Example: USS general drive connection and SEtUDumrimiiiiinieeiessnnnneee s 1088
MOdDUS COMMUNICATIONvviiiiaiiieiieiiniiieieisiieieess st sssnsbneeessssnnessssnsneesssssnsnssssssssnnsssssdes 1091
Overview of Modbus RTU and Modbus TCP communiCationccoimrrmeininnnnennnsnihe 1091
MOADUS TCP ...ttt et e st e s seess s e s s sesesssneesnsneesnsnsssntes 1094
OVEBIVIEW .tttk ettt ARttt e st e 1094
Selecting the version of the Modbus TCP instruCtions. ... 1094
MOADUS TCP INSITUCLIONS ...eviiiiiiiiiiiiiniiieieisiieie skt bnee s s e s ssbneesssnsnsnsssssnssnnsssssdes 1095
MOADUS TCP €XAMPIESveiiiiiniiiiiiiiiiiiiiiisiieieesssneeeesssssbneesssssssnssssssssnnssssssssnssssssssnnsssssies 1152
MOADUS RTU ...t et e s e s s e e s e ensneesnsnsesntes 1156
OVEBIVIEW .tttk ettt ARttt e st e 1156
Selecting the version of the Modbus RTU inStructionsccccccoiinininieeenihe 1159
Maximum number of supported Modbus SIAVEScccccciiiininiiiiiie e 1159
MOdbUS RTU INSHUCHONS ...cviiiiiiiiiiiiiiiiiiiiniieiiess s sss e s s ssssnessssnsnsnsssssssssnssssndes 1160
MOADUS RTU ©XAMIPIES....uviiiiiiiiiiiiiiiiiieieissneeiees s beeeessnss e s ssssssnsssssssnnesssssssnssssssssnnssssstes 1180
Legacy PtP communication (CM/CB 1241 ONIY)uueiiiiiunrniiniinniniieinnnneiesssnnnesesssnsnssssssiee 1184
Legacy point-to-point iNStrUCHIONSuuuiiiiiiiiiiiiiiiiiii i ssssn e s ssnssnesessndee 1184
PORT_CFG (Configure communication parameters dynamically)........ccccccceeeiiiinnennnnnih 1184
SEND_CFG (Configure serial transmission parameters dynamically)cccocooinnennnnnnih 1186
RCV_CFG (Configure serial receive parameters dynamically)cccccoiinrniiinnnninnnnih 1187
SEND_PTP (Transmit send buffer data) ... 1191
RCV_PTP (Enable reCeive MeSSAQES)icuuuueiiiinriiiiiiiniiiieiisnineiessssnsnsssssssssessssssssnssssssies 1193
RCV_RST (Delete receive DUEr)t nessssnnnessssssssnesssssdee 1195
SGN_GET (Query RS-232 SIQNAIS).......uuuiiueiiiiuiiiiiiiiiiiieiiiiiieiiieesieeeseeesseessseeesnnessssses 1196
SGN_SET (Set RS-232 SiGNaIS)ucoiiueiiiiiiiiiiiiieiiieeeiieeesiieee st sieeesssee s sseesnseeessnesssntes 1197
Legacy USS communication (CM/CB 1241 ONIY) ...ueuiiiiimiiiiiiiiniiiiiiinneiessnnneeeesssnnneesssniee 1198
Selecting the version of the USS inStructions ..o e 1199
Requirements for using the USS DrotoCol.........ouuueirriiiiiieiieiniieieessnnneesssssnnnesssssdee 1200
Legacy USS iNSITUCLIONScouiiiriiiiiiiiiiiiiiiiiiiieis et s s s nessssssnsnesesssssnnsssssdes 1202
USS_PORT (Edit communication using USS network) instructionccceceineennnnnih 1202
USS_DRYV (Swap data with drive) inStruCtioNccorrriiiiiireeie e 1203
USS_RPM (Readout parameters from the drive) inStructioncccccoovecicinnneeeennennn e 1206
USS_WPM (Change parameters in the drive) inStructioncccorecinininihe 1207
Legacy USS Status COUESiiiuuumiiiiiiiiiiiiiiiiiiieisieeie s s s snesesssssbnessssnsnsnssssssssnnsssssdes 1208
Legacy USS general drive setup requiremMents........cocureinmimirisieeeesssnsnees s 1210
Legacy Modbus TCP COMMUNICALION ...coiiiurrniiiiinniiiiiinnnininsssnnnesesssnsnssssssnssnssssssssnssssssies 1210
OVEBIVIEW ..tttk sttt ARttt e st e 1210
Selecting the version of the Modbus TCP instruCtions..........cueinrininineeesnie 1211
Legacy Modbus TCP iNSrUCHIONSuuuiiiiiriiiiiiinniniieiinniniesssnnnesesssnsnsesssssnsnssssssssnssssssies 1212
MB_CLIENT (Communicate using PROFINET as Modbus TCP client).........ccccccccennnih 1212
MB_SERVER (Communicate using PROFINET as Modbus TCP server)..........ccceceenni 1217

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

13.8.4 Legacy Modbus TCP @XaMDIESiuuuiiiiiiiiiiieiiniiieeesinnineeesssssssesssssssnssssssssessssssssnsssssssntes 1223
13.8.4.1 Example: Legacy MB_SERVER Multiple TCP connections..........cccceceiimininniinnnennnnnnnnihe 1223
13.8.4.2 Example: Legacy MB_CLIENT 1: Multiple requests with common TCP connection.......... 1223
13.8.4.3 Example: Legacy MB_CLIENT 2: Multiple requests with different TCP connections......... 1224
13.8.4.4 Example: Legacy MB_CLIENT 3: Output image write requestccccciiiciniiinnenennnnnnihe 1225
13.8.4.5 Example: Legacy MB_CLIENT 4: Coordinating multiple requestsccceciiinneneninnnihe 1226
13.9 Legacy Modbus RTU communication (CM/CB 1241 0nly)........ccoiiiniiiiniiieieninnnihe 1227
13.9.1 OVEIVIEW ...ttt et e st e s e st e st e st e s st et en e ess et ensseesnsneesssdin 1227
13.9.2 Selecting the version of the Modbus RTU iNStrUCtiONScccciiiiineiininiieiineneesnnniks 1227
13.9.3 Legacy Modbus RTU INSIFUCLIONSuueiiiiiiriiiiiiiiiiiiniiinieneeesssneesssssnsnsssssssssesssssnnsnsssssssnths 1228
13.9.3.1 MB_COMM_LOAD (Configure port on the PtP module for Modbus RTU)..........cccveeeee e 1228
13.9.3.2 MB_MASTER (Communicate using the PtP port as Modbus RTU master).........ccccoo.uuihe 1231
13.9.3.3 MB_SLAVE (Communicate using the PtP port as Modbus RTU slave).......cc..cccceeeeinnnnihe 1236
13.9.4 Legacy Modbus RTU €XaMPIESuuueiiiiinniiieiiniiiieeiinniensessssssnesssssssnssssssssnessssssssssssssssntes 1242
13.9.4.1 Example: Legacy Modbus RTU master Drogramcccnrrnnnennineeessssnnesssssnnses 1242
13.9.4.2 Example: Legacy Modbus RTU Slave program.............c i nsinesssssseessssssnies 1243
13.10 Industrial Remote Communication (IRC)oiiuuriiiiniiinieeesnnreeeesssnneesessnnses 1245
13.10.1 TeleCoNtrol CPS OVEIVIEWueeieiiiiiiiiiiiiiieiieieeeeeeeeeeessssssssssssseeeeesessssssssssssssnsssessssesias 1245
13.10.2 Connection t0 @ GSM NEIWOIKoiiuruiiiiiiriiiieiisiiiie s sssnees s s sbnneesssnsessssssnsnsssssssnths 1248
13.10.3 ApPlIications Of the CP 1242-7occuuiiiiiiiiiiiiiiiiieeiisieeeeesssaee s sbnnssssssnnessssssnsnsssssssnths 1249
13.10.4 Other properties Of the CP 1242-7 ...t sssnbnsessssnnessssssnsnsssssssnths 1250
13.10.5 Further infOrmMation e ettt e e e e e s s s sssnsnsnnneeeeeseeias 1250
13.10.6 AA CCESSONIES ...ttt et eeees s s ssssteseeeeeeeesesssssssssssssssssssssssssssssssssssnsnssssessssssasssssssnssssssssein 1250
13.10.7 Configuration examples for teleCoNtrol..........c i snnies 1251
14 TeleService communication (SMTP eMail)cocomiiummimmminmiimeisnissesssnessnsssssnssnnnssnsssmnessmsssmessssssssssies 1257
14.1 TM_Mail (Send email) iNStrUCHIONuuiiiiiiiiiii it snnnesesssnntes 1257
15 Online and diagNOSHC tOOIScoiuiiesiiisiiisinisinssssmsessmsenessssss s s snsssnnssnnsssnnssmnssnssssnesssnsssnesssnssssssies 1265
15.1 SEALUS LEDS ...ttt et e s s e e en s e sss e e nneeensneenndin 1265
15.2 Going online and connecting {0 @ CPU ... sssn e sssnnies 1268
15.3 Assigning a name to a PROFINET 10 device online........cc.cooiimmneiinnieinnnenesssnnnis 1269
15.4 Setting the IP address and time of daycccooiiiiiiii s 1271
15.5 Resetting {0 factory Settings ... nnnes 1271
15.6 UDdating fIMMWAIEcooiiiiiii ittt e s s s e s s b s s s s bnssesssssnnsssssnnths 1272
15.7 Formatting a SIMATIC memory card from STEP 7ccccoiiiiiiiiiiiiiieeeesnnns 1273
15.8 CPU operator panel for the onling CPU ... sssnsnesssssnnies 1274
15.9 Monitoring the cycle time and MEeMOrY USAQE.........uiiurreiiiiniieiinnieeeessssnnesesssnnnnesesssnnses 1275
15.10 Displaying diagnostic events in the CPUccocoiiiiiiii s ssnnnes 1275
15.11 Comparing offline and onliNe CPUS ... snes s sssnsnnssssnnnes 1277
15.12 Performing an online/offline topology COMPAriSONceiiiiiirmiiiiiieieinieeeessnnreeeessnnnses 1277
15.13 Monitoring and modifying values in the CPUccccciiiiiiiiiienieeeesnnnie 1279
15.13.1 Going online to monitor the values in the CPUccccooiiiiiiiienneeeesnnnss 1279
15.13.2 Displaying status in the program €ditOr..........cciurmiriire e ssn e ssnnies 1280
15.13.3 Capturing a snapshot of the online values of a DB for restoring valuescccccccceeo.. . 1281

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 21

Table of contents

22

15.13.4 Using a watch table to monitor and modify values in the CPUccccooiiiiiiiiinnnnnnnnih 1282
15.13.4.1 Using a trigger when monitoring or modifying PLC tagscccormmnnnnnnneeensnnnntis 1283
15.13.4.2 Enabling outputs in STOP MOcuiiiiuiniiiiiniiiiiiiiniieiiesnnnneeessssnneessssnsssesssssssssesssssntes 1284
15.13.5 Forcing values iN the CPUcuiiiiiiiiiiiiiiinieiiesssniese s snesessssssnessssssssnssssssssnssssssdes 1285
15.13.5.1 Using the fOrce table ...t n e s s snndes 1285
15.13.5.2 Operation of the FOrce funClioN.ciiiiiii e nnndes 1286
15.14 Downloading in RUN MOuuuiiiiiiiiiiiiiiiiiiiiiiieeisssnsieee s ssessssssnsnsssssssssnssssssssnssssssies 1287
15.14.1 Prerequisites for "Download in RUN MOdE"............uuiiimmuiiiiiniiinnieiessnnnnesessssnnessssniee 1288
15.14.2 Changing your program in RUN MOE..........uuuiiiiimiiiiiiiiiiiiiinnineiesssnsneessssnssessssssssnssssssies 1289
15.14.3 Downloading Selected DIOCKScuiiiuruiiiiiiiiiiiiiiiiieiiesinniiee s bnesessssnbneesssnsnsnssssssnsnesssssdes 1290
15.14.4 Downloading a single selected block with a compile error in another block 1291
15.14.5 Modifying and downloading existing blocks in RUN mMode..........cccorniininininieennihe 1292
15.14.6 System reaction if the download process failSccorreiimiiii e 1294
15.14.7 Considerations when downloading in RUN MOdEccccciiininiiiiiniinineiessnnnneesssniee 1295
15.15 Tracing and recording CPU data on trigger CONditioNnsScccceiinrnnninnnnneieesnie 1296
15.16 Determining the type of wire break condition from an SM 1231 module..............cccceennni 1298
15.17 Backing up and restoring @ CPUuuiriiiiiieii i neeesssnsneesssssssssssssssnssssssdes 1301
15.17.1 Backup and restore OPHONSuueiiiirrriiiiiisieeiiiisnieeiessnssbeees s snesessssnsnsssssssssnssssssssnnsssssies 1301
15.17.2 Backing up an onling CPUciiiiiiiiiiiiiiiieeiesssninse s snessssssssnessssssssnsssssssssssssssdes 1302
15.17.3 RESLONMNG @ CPU ...tttk ss st s st e s s bnnesssssssnssssades 1304
TechniCal SDECIICAtIONS........ciierrrreiisimrirrrssssssnsssssssnnsssssssmsssssssssnnnssssssmssssessssnsnsssssssnnssessssnnssssssssnsnsssssstos 1307
A.1 Siemens Online SUPPOIt WEDSILEuuuiiiiiiiiiiiiiiii e e 1307
A.2 General technical SPECIfiCatiONS...uuruiiiiiiiiiiiiiiiiii e sssn s snnses e s nsnnessssadee 1307
A.3 PROFINET interface X1 pOrt DINOULSooiururiiiinnieiiiinnnieiesssnineissssnsnssssssssssssssssssnssssssies 1316
A4 CPU 21 0C ettt ettt e e st e s e sss e ss s ee s sesesssee e s snsesnsnsesntes 1317
A.4.1 General specifications and fEatUreSoiiuuriiiiiii e ss e 1317
A.4.2 Timers, counters, and code blocks supported by CPU 1211Cccoiiiiiiinnnnnniiiinenennnnihe 1319
A.4.3 Digital iNpUtS @Nd OULDULSiiurieiiiiiiiiiiiiisiieiieis et s s s s s s sneessssnsnnssssndes 1322
A.4.4 ANGIOG INDUES etttk et ettt e st st e s et e e nne e s s bnsessadee 1324
A4.41 Step response of the built-in analog inputs of the CPUccccoiiiiiiiinnih 1324
A.4.4.2 Sample time for the built-in analog ports of the CPUcccccciiiiiiiiniiiiiiiiieeeenie 1325
A.4.4.3 Measurement ranges of the analog inputs for voltage (CPUS)cccccciiiiniiiinnennnnnnih 1325
A.4.5 CPU 1211C WIiriNG Qi@QramMSuueeieiinniiiieinsineiessssssseesssssssnsssssssssssssssssnsssssssssnssssssssnnsssssiss 1326
A5 CPU 212C ..ttt et e s e sss e ss s e s s sneessseeesnsnsesnsnsesnten 1329
A.5.1 General specifications and fEatUreSoiuuriiiiiii e sn e 1329
A.5.2 Timers, counters, and code blocks supported by CPU 1212Ccccoeeiiinnnnnniinnnnnnnnnnih 1330
A.5.3 Digital iNpUtS @nd OULDULSiiurieiiiiiiiiiiiiisiiiieeii et nessssnsssneessssnsnnsessndee 1334
A.5.4 ANGIOG INDUES .tttk e sttt st e sttt s e e st e e st san s sns s sadee 1335
A.5.4.1 Step response of the built-in analog inputs of the CPUcccccoiiiiiiiinieni 1336
A.5.4.2 Sample time for the built-in analog ports of the CPUcccccciiiiiiiiniiiiiiiiieieene 1336
A.5.4.3 Measurement ranges of the analog inputs for voltage (CPUS)cccccciiiiniinnennnnnnih 1336
A.5.5 CPU 1212C WiriNG Ai@QramMSuueeieiuniiiiieinsineiessssssseesssssssnsssssssssssssssssnsssssssssnssssssssnnssssies 1337
A.6 CPU 2T4C ekttt s e ss st e s st e s seesssseessssesessseeensnsesnnnsesntes 1340
A.6.1 General specifications and fEAtUreSoiiuuriiiiii e sn e e 1340
A.6.2 Timers, counters and code blocks supported by CPU 1214Ccccoiiciiinnnnnniiinnnennnnnnih 1342
A.6.3 Digital iNpUtS and OULDULSiiurieiiiiiiiiiiiiisiieieeis e s s snessssnsnsneessssnsnnsssssdes 1345
A.6.4 ANGIOG INDUES etttk s stttk st s st et e e mee e s s s s bns s sadns 1347

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

A.6.4.1 Step response of the built-in analog inputs of the CPUccccoiiciiiiiciinnnhe 1347
A.6.4.2 Sample time for the built-in analog ports of the CPUcccceeiiiiiiiiiiniieieesnnnihe 1347
A.6.4.3 Measurement ranges of the analog inputs for voltage (CPUS)cccooiiiniinnenennnnnnihe 1348
A.6.5 CPU 1214C WiriNG QiaQIamMSuvveieiisiieieeiinnieieessssssessssssssnssssssssssssssssssnsssssssssnssssssssssssssssnths 1348
A7 CPU 215C ..ttt et e et eas s e e s e ansssessssneessnesssnsnsssstin 1351
A.7.1 General specifications and fEAtUreS ... e snnies 1351
A.7.2 Timers, counters and code blocks supported by CPU 1215Cccccceiiiinnninniiinnnennninnnihe 1353
A.7.3 Digital iNpUts and OULDULSiiuriiiiiiiiiiee itk snsns s nnesesssnntes 1357
A.7.4 ANAlog iNPULS AN OUIDULScuiiiiiiiiiiiiieiiiieiee etttk ek sn s nneeesssnntes 1358
A.7.4.1 Step response of built-in analog inputs of the CPUcccciiiiiiiiiiiieeeesnnnhe 1359
A.7.4.2 Sample time for the built-in analog ports of the CPUccccceciiiiiiieiiiiiieieennnnihe 1359
A.7.4.3 Measurement ranges of the analog inputs for voltage (CPUS)cccoiiinnniiinnennnnnnnnihe 1359
A.7.4.4 Analog output SPECIfICALIONSuuiiiiiiiiiiiiiiiiiiie e s s nnee s s s s nnesessssntes 1360
A.7.5 CPU 1215C WiriNG Qi@QIamMScueeeeiinrieieeiinninieessssnesssssssssssssssssssssssssssnsssssssssnsssssssnsssssssnths 1361
A.8 CPU 217 C ettt et e s e sss e as s e s s ansssessssneessseessnsnsesstin 1365
A.8.1 General specifications and fEAtUreS ... snnies 1365
A.8.2 Timers, counters and code blocks supported by CPU 1217Ccccoeeiiinnninniiinnnennninnnihe 1367
A.8.3 Digital iNpUts and OULDULSiiureiiiiiiiiiieiiiiiiee itk nsne s snnnessssssntes 1370
A.8.4 ANAlog iNPULS AN OUIDULSieiiiii itttk etk n s nneeesssnntes 1374
A.8.4.1 ANalog iNPUL SPECITICAtIONSvveiiiiiiiiiiie itttk b e s s snnnesssssnnnesssssnntes 1374
A.8.4.2 Step response of built-in analog inputs of the CPUcccciiiiiiiiieeeeennnihe 1374
A.8.4.3 Sample time for the built-in analog ports of the CPUcccceciiiiiiiiiiiieieennnnihe 1375
A.8.4.4 Measurement ranges of the analog inputs for voltage (CPUS)cccciiiinnniiinnenennnnnnihe 1375
A.8.4.5 Analog output SPECIfICALIONSuuiiiiiiiiiiiiiiiiiiie kbbb snneesssssnnnesesssnntes 1375
A.8.5 CPU 1217C WiriNG QI@QIAIMSuvviieiiniieieeiinnieeeessssseesssssssssssssssssnssssssssnsssssssssnsssssssssssessssnths 1377
A.8.6 CPU 1217C Differential Input (DI) detail and application examplecccccoiiinnneinnnnnihe 1379
A.8.7 CPU 1217C Differential Output (DQ) detail and application example..........cccccoocieceninnnile 1380
A.9 Digital signal MOAUIES (SIMS)......uuiiiiuriiiiiiiniiiieiinrriieessnsreeeeesssssnesssssssnsssssssssnssssssssnssessssnths 1381
A.9.1 SM 1221 digital input SPECIfICAtIONSouiiiirriiiiiiiiiiiiiiiieie e ssnneeesssnntes 1381
A.9.2 SM 1222 8-point digital output SPecCifications..........coiiiriiiiie e snnie 1383
A.9.3 SM 1222 16-point digital output SPECIfiCatioNS........ccoiiirreiiiiiiiiiiiiie e snnie 1384
A.9.4 SM 1223 digital input/output V DC SpeCifiCationsccccoiiimmmiiniinnnininieeiessnneeeeessnnnies 1389
A.9.5 SM 1223 digital input/output V AC SpecifiCations..........cccciiininiiiienieieenneeeesnnnss 1396
A.10 Analog signal MOAUIES (SIMS)cuiiiuruiiiiiiiiiiieiiiiiiie s ssnree s s bnee s s snneesssssnsnesssssnnths 1398
A.10.1 SM 1231 analog input module SPecCifiCationScoirriiiiiii e ssnnnies 1398
A.10.2 SM 1232 analog output module SpecCifiCatioNS.........cccrreiiiiieiiieie e ssnnnnes 1403
A.10.3 SM 1234 analog input/output module sSpecifications........cc.ciiiiiiiiieiieeeesnnniks 1405
A.10.4 Step response of the analog INPUES......uurriiiii e ssnneesssnnses 1408
A.10.5 Sample time and update times for the analog iNPULS ...k 1408
A.10.6 Measurement ranges of the analog inputs for voltage and current (SB and SM)............... 1409
A.10.7 Measurement ranges of the analog outputs for voltage and current (SB and SM)............ 1410
A.11 Thermocouple and RTD signal modules (SMS)ooiurmmmiiieinieeeesssnneessssnnses 1411
A.11.1 SM 1231 THEIMIOCOUDIE ...tttk e s s ssssne e s s s s s snsnsssssnnnnesssssnnths 1411
A.11.1.1 Basic operation for a thermoCoUDIEccuuiiiiiiii s e snnnes 1413
A.11.1.2 Selection tables for the SM 1231 thermoCouDIecccceiiiiiiniiiiiee e snnnie 1414
A.11.2 SIM 1231 RTD ettt et et ess s e s sseeensssessssneessseessssnessstin 1416
A.11.2.1 Selection tables for the SM 1231 RTDoiuuiiiiiiiiiiiiiiiinieeee s sssieee s snesssssnsnnsssssnnses 1419
A.12 TeChNOIOQY MOAUIESvviiiiiiiiiiiiiiikiiie etk s s sss s s sss e s s bnee e s s s bneessssnsnnsssssnnths 1422
A.12.1 SM 1278 4XIO-LinK MaSter SIMcoiiueiiiiiiiiiiieiiieeiieeesieeeseee e see s e sneessnntas 1422

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 23

Table of contents

24

A.12.1.1
A.12.1.2
A.12.1.3
A.12.1.4

A.13

A.13.1
A.13.2
A.13.3
A.13.4

A.14
A.14.1
A.14.2
A.14.3
A.14.3.1
A.14.3.2
A.14.3.3
A.14.3.4
A.14.4
A.14.4.1
A.14.4.2
A.14.5
A.14.5.1
A.14.5.2

A.15

A.16
A.16.1
A.16.1.1
A.16.1.2
A.16.1.3
A.16.1.4
A.16.2
A.16.2.1
A.16.2.2
A.16.2.3
A.16.3
A.16.3.1
A.16.3.2
A.16.4
A.16.4.1
A.16.4.2
A.16.4.3

A7
A.18
A.19
A.20
A.21
A.22

SM 1278 4XIO-Link MaSter OVEIVIEWicuuueiiiinnnniiiiinnninieninnnnesssssnsnessssssssnssssssssnssssssies 1425
(0701 o] 2 T=Tex 12T IR RTR O RO OO T UTR SR UROR T PPPURPPPPRRTY 1427
Parameters/addreSs SPACEuuuuiiiiuuuiiiiiiniieieeissnetessssssnnsessassssnssssssssnssssssssnssssssssnnsssssies 1429
Interrupt, error, and SYSteM Alarms ... e e e e e 1432
Digital signal boards (SBS)uuuiiiiumiiiiiiiiiiiiinieiie s saesessssssneessssssnssssssssnssssssies 1435
SB 1221 200 kHz digital input SpPeCifiCatioNscciirrriiiiiiinnieienieeeessnnnees e 1435
SB 1222 200 kHz digital output SPeCIfiCationsccoiiurreiiiiiniiiiiiienreeee e 1437
SB 1223 200 kHz digital input / output Specificationscccccieimnrciinieeenie 1439
SB 1223 2 X 24V DC input/2 X 24V DC output specificationscccccciiiinnennnnnnih 1442
Analog Signal boards (SBS).........uuuuiiuuuuiiiinsnniiiiinnnneisssnnnnneessssssssssssssnsnsssssssssnssssssssnnsssssies 1445
SB 1231 1 analog input SPECIfiCatioNSc.cuueiiiiniiiiiiiiiiiiieiinn i ssnnreeessssnnreessssnssnneessndee 1445
SB 1232 1 analog output SPECIfiCatiONSuueiiiinriiiiiiiiiiiiiiiieiiessnreeeesnnneeesssssneesssndee 1447
Measurement ranges for analog inputs and OUIPULSuueiiiirieiiiiiiiiiieieeneeee e 1449
Step response of the analog INDUES.......uuiiiireii e ssnsnnes s 1449
Sample time and update times for the analog iNDULS ... 1449
Measurement ranges of the analog inputs for voltage and current (SB and SM)................ 1449
Measurement ranges of the analog outputs for voltage and current (SB and SM)............. 1450
Thermocouple signal boards (SBS).......c i uuuiriiiiinriiinnisnnaeeesssnsneesssssnsessssssssnssesssies 1452
SB 1231 1 analog thermocouple input SPecCifications ... 1452
Basic operation for a thermoCOUDIEicuuriiiiiiiiiiiiieie e ssnnnees s 1453
RTD Signal boards (SBS)icuuuuuiiiisnuniiiinnnneiinisnnneesssssssnssssssssssssssssssnsssssssssnssssssssnnsssssies 1456
SB 1231 1 analog RTD input SPeCifiCatioNSc.uueiiiiimrriiiiiniiniieiiinneiessnnneeesssssnnesss s 1456
Selection tables for the SB 1231 RTDoiiuiuiiiiiiiiniiiiinsieeiesssnsneesssssssessssssssnssssssdes 1459
BB 1297 Battery DOArd.......coiuuueiiiiiiiiiiiiieiiei e ssssbnee s s s ssssnessssssssnsssssssssnsssssdes 1461
CommUNICAtION INEITACES i urreiiiiiiiiiiii ikttt naee e s s bneesssnnnsnssssssnsnnsssssdes 1462
PROFIBUS ...ttt ss e s s seessssnesssseeessseeesnsnsesnsnsesntes 1462
CM 1242-5 PROFIBUS DP SLAVEcooiiiiiiiiiiiieiiieieie e snnee s 1462
Pinout of the D-sub socket of the CIM 1242-5cccoiiiiiiiiiiniiiiiieiensnineeessnnneee s 1464
CM 1243-5 PROFIBUS DP MaSEFueiiiiiiiiiiieiiieiiiiieeeiiieeesieeesieeessiee s e ssseeessseessnses 1464
Pinout of the D-sub socket of the CIM 1243-5cccoiiimiiiiiniiiiieireeee e 1466
CP A242-7 .ottt ettt et Rne e s et e nn e an st e ensneentes 1466
CP 1242-7 GPRS ...ttt et e s e s seesssseessssesesssnesssnsesnsssesntes 1467
GSM/GPRS antenna ANT794-AMRcoiiuuiiiiiiiiiiiiiiiiiiiieee i e s nneeesnseeesnnes 1468
Flat antenna ANT794-3Mocuuuuiiiiiiiiiiiiniiiiiiinineiesssssbnsessssssnsssssssssnsssssssssnssssssssnnsssssies 1469
CM 1243-2 AS-i MASEEI ..ttt e e sssneesssseeessseesssseeesnnnsssntes 1470
Technical data for the AS-i master CM 1243-2..........cccciiuuiiiiiiiiiiniiiessnneeeesssnnneesssniee 1470
Electrical connections of the AS-i Master.. ... 1471
RS232, RS422, and RS485coiiuiiiiiiiiiiiieeiiee e nnee e 1472
CB 1241 RS485 SPECIfiCAtIONS....uviiiiurriiiiiiiniiiiiiiininiiesannnsnnesssssnesessssnsnsssssssssnssssssssnssssssies 1472
CM 1241 RS232 SPECIfICAtIONS ...eviiiirriiiiiinniniiiiinniniisssnsnnnsssssssnesssssnsnsssssssssnssssssssnssssssies 1475
CM 1241 RS422/485 SPECIfICAtIONSvvviiiiniiniiiiiniiiiiiiiniieiesssnineeesssssnsssssssnsnssssssssnssssssdes 1476
TeleService (TS Adapter and TS Adapter modular) ..o 1477
SIMATIC MEMOTY CAOS ...uveiiiiunrniiieiinnnnieisisssnessssssssnsssssssssnsssssssssnssssssssnssssssssnssssssssnnssssies 1478
INDUE SIMUIBEOTS ...ttt sttt e s e e nnndes 1478
S7-1200 Potentiometer MOAUIEuuuiiiiruniiiiiiiiiiniiie i sssn s snnseeessssssneesssadee 1480
[/O €XPANSION CADIEueiiiiiiiiiiiiiiiiiiiieei kit et s s st e s s s s s snsssnesessssnnesssssnndes 1481
COMPANION PIOAUCES ..tttk skt s s sseeesssssbneessssssnssssssssnssssnsssnssssssssnnsssssdns 1482

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Table of contents

A.22.1 PM 1207 DOWET MOAUIEciiiiiiiiiiiiiiiiiiiieiisieeeessssseeesessnssneeessssssnssssssssnsssssssssnssssssnsssssssssnths 1482
A.22.2 CSM 1277 compact SWitCh MOAUIEcooiiirriiiiiiiiiiiiiiiiii e ssnneeesssnntes 1482
A.22.3 CM CANODPEN MOAUIE ...tttk s ss ek e s s bnesssssnsnnsssssnntes 1482
A.22.4 RF120C communications MOAUIEcouiiiuumiiiiiiiiiiiiiniiiieesnrseeessssnsneeesssnnessssssnsnesessssntes 1483
A.22.5 SM 1238 Energy meter MOAUIEcuuiiiiirriiiiiiiiiiiiiiiiee s e s nnee s ssnnnnssssssntes 1483
A.22.6 SIWAREX electronic weighing SYSIEMSuuiiiiiiiiiiiiiiii i sssnsnesssssnnses 1484
B Calculating @ DOWEE BUAQELcooiiiiieiiniiienssinn s esesssnns s nsnssssnssssmnnssssnssssnnnssssnsssssnnssssnmssssnnssssmnnsssssn 1485
Ordering INfOrMAION.ouiisiar i renissnnessennssssneesmnnssssmsesssnnssssmsessssnssssmnsssssnssssmnmssssnssssnnsssssnmsssnnsssssmnsssssion 1489
CA CPU MOAUIES ...ttt e en e sseasseesnsesssesssneedes 1489
C.2 Signal modules (SMs), signal boards (SBs), and battery boards (BBS)...........c.ccceeeinnnnnihe 1489
C.3 COMMUNICALION ..tttk ket et s e st e e s e s s des 1491
C4 Fail-Safe CPUs and signal MOAUIEScciimimiiiiiiiiieeesssssseeesssssnessssssnsnessssssnses 1492
C.5 OFNEr MOAUIES ...tttk ket sns s s b bt e s ssbne s e s s s esssnntes 1493
C.6 MEMOTY CAIS .tttk ekttt e sttt s et e sttt b e s s des 1493
C.7 BaSIC HMI AEVICES....coiiiiiiiiiiiiiiiiie ikt beee st esssss e s s s s e s s s bnnesssss s s e sssnssnsssssnnths 1493
C.8 Spare parts and other NArdWare ..o snee s ssnnnessssnntes 1494
C.9 Programming SOfWEAIEouiiiuuriiiiiiiiiisiiiee e ss s ssn s bnee s s s snbnesssssnnsnsssssnnths 1500
C.10 OPC UA LICENSES ..ciiiiiiiiiiiiitiiiieeisbieessssssssessssssssnssssssssssssssssssnssssssssssssssssssnsssssssssnsssssnnths 1500
D Device exchange and spare parts COMPAtibIlityooccimimmmnn e nnns s nns s s smnns s sssses 1501
D.1 Exchanging a V3.0 CPU for @ VA.X CPUciiiiiiiieiiessnsnsessssnsessssssnsnsssssssnses 1501
D.2 S7-1200 V3.0 and earlier terminal block Spare KitS..........courmimiiiieennneeeessnnnis 1507
00 = G R P TR PR RRY 1509

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 25

Table of contents

26

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Product overview 1

1.1 Introducing the S7-1200 PLC

The S7-1200 controller provides the flexibility and power to control a wide variety of devices in
support of your automation needs. The compact structure, flexible configuration, and powerful
instruction set combine to make the S7-1200 a perfect solution for controlling a wide variety of
applications.

The CPU combines the following elements and more in a compact housing to create a powerful
controller:

® A microprocessor

® An integrated power supply

® |nput and output circuits

e Built-in PROFINET

® High-speed motion control 1/0

After you download your program, the CPU contains the logic required to monitor and control
the devices in your application. The CPU monitors the inputs and changes the outputs

according to the logic of your user program, which can include Boolean logic, counting, timing,
complex math operations, motion control, and communications with other intelligent devices.

The CPU provides a PROFINET port for communication over a PROFINET network. Additional
modules are available for communicating over networks and protocols such as the following:

e PROFIBUS
® GPRS

e LTE

¢ WAN with Security Integrated Features (Firewall, VPN)
® RS485

e RS232

e RS422

e |EC 60870
e DNP3

e USS

e MODBUS

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 27

Product overview

1.1 Introducing the S7-1200 PLC

T

®

door

board I/O

® ® ©® 006

Power connector
Memory card slot under top

Removable user wiring con-
nectors (behind the doors)

Status LEDs for the on-

PROFINET connector (on

the bottom of the CPU)

Several security features help protect access to both the CPU and the control program:

e Every CPU provides password protection (Page 192) that allows you to configure access to
the CPU functions.

® You can use 'know-how protection" (Page 195) to hide the code within a specific block.

® You can use copy protection (Page 196) to bind your program to a specific memory card or

CPU.
Table 1-1 Comparing the CPU models
Feature CPU 1211C | CPU 1212C CPU 1214C CPU 1215C CPU 1217C
Physical size (mm) 90 x 100 x 75 110x100x 75 [130x100x 75 | 150 x 100 x 75
User memory Work 50 Kbytes 75 Kbytes 100 Kbytes 125 Kbytes 150 Kbytes
Load 1 Mbyte 2 Mbytes 4 Mbytes
Retentive 10 Kbytes
Local onboard I/O | Digital 6 inputs/ 8 inputs/ 14 inputs/
4 outputs 6 outputs 10 outputs
Analog 2 inputs | 2 inputs/2 outputs
Process image size | Inputs (I) 1024 bytes
Outputs (Q) | 1024 bytes
Bit memory (M) 4096 bytes 8192 bytes
Signal module (SM) expansion None 2 8
Signal board (SB), Battery board | 1
(BB), or communication board
(CB)
Communication module (CM) 3

(left-side expansion)

28

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Product overview

1.1 Introducing the S7-1200 PLC

Feature CPU 1211C CPU 1212C CPU 1214C CPU 1215C | CPU 1217C

High-speed coun- | Total Up to 6 configured to use any built-in or SB inputs

ters 1 MHz - [Ib2toIb5
100/'80 kHz | la.0 to 1a.5
30/'20 kHz | -- la.6 tola.7 la.6 to Ib.5 | la.6tolb.1
200 kHz®

Pulse outputs? Total Up to 4 configured to use any built-in or SB outputs
1 MHz - Qa.0to Qa.3
100 kHz Qa.0 to Qa.3 Qa.4 to Qb.1
20kHz |- |Qa4t0Qa5 [Qa4toQb.1 -

Memory card SIMATIC memory card (optional)

Data logs Number Maximum 8 open at one time
Size 500 MB per data log or as limited by maximum available load memory

Real time clock retention time

20 days, typ./12 day min. at 40 degrees C (maintenance-free Super Capacitor)

PROFINET

Ethernet communication port

1 2

Real math execution speed

2.3 pslinstruction

Boolean execution speed

0.08 psl/instruction

' The slower speed is applicable when the HSC is configured for quadrature mode of operation.

2 For CPU models with relay outputs, you must install a digital signal (SB) to use the pulse outputs.
3 Up to 200 kHz are available with the SB 1221 DI x 24 V DC 200 kHz and SB 1221 DI 4 x 5V DC 200 kHz.

The different CPU models provide a diversity of features and capabilities that help you create
effective solutions for your varied applications. For detailed information about a specific CPU,
see the technical specifications (Page 1307).

Table 1-2 Blocks, timers, and counters supported by S7-1200
Element Description
Blocks Type OB, FB, FC, DB
Size | CPU Model CPU1211C | CPU 1212C | CPU 1214C | CPU 1215C | CPU 1217C
Code blocks 50KB 64KB 64KB 64KB 64KB
Linked' data blocks 50KB 75KB 100KB 125KB 150KB
Unlinked? data blocks | 256KB 256KB 256KB 256KB 256KB

Quantity

Up to 1024 blocks total (OBs + FBs + FCs + DBs)

Nesting depth

16 from the program cycle or startup OB;
6 from any interrupt event OB?

Monitoring

Status of 2 code blocks can be monitored simultaneously

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 29

Product overview

1.1 Introducing the S7-1200 PLC

e Sint, USInt: 3 bytes
® |nt, Uint: 6 bytes
e Dint, UDInt: 12 bytes

Element Description
OBs Program cycle Multiple
Startup Multiple
Time-delay interrupts 4 (1 per event)
Cyclic interrupts 4 (1 per event)
Hardware interrupts 50 (1 per event)
Time error interrupts 1
Diagnostic error interrupts 1
Pull or plug of modules 1
Rack or station failure 1
Time of day Multiple
Status 1
Update 1
Profile 1
Timers Type IEC
Quantity Limited only by memory size
Storage Structure in DB, 16 bytes per timer
Counters Type IEC
Quantity Limited only by memory size
Storage Structure in DB, size dependent upon count type

' Stored in work memory and load memory. Cannot exceed the size of the remaining work or load memory.

2 Stored only in load memory

3 Safety programs use two nesting levels. The user program therefore has a nesting depth of four in safety programs.

30

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Product overview

1.2 Expansion capability of the CPU

1.2 Expansion capability of the CPU

The S7-1200 family provides a variety of modules and plug-in boards for expanding the
capabilities of the CPU with additional I/O or other communication protocols. For detailed
information about a specific module, see the technical specifications (Page 1307).

@

Communication module (CM) or communication processor (CP) (Page 1462)

CPU (CPU 1211C (Page 1317), CPU 1212C (Page 1329), CPU 1214C (Page 1340), CPU 1215C
(Page 1351), CPU 1217C (Page 1365))

Signal board (SB) (digital SB (Page 1435), analog SB (Page 1445)), communication board (CB)
(Page 1472), or Battery Board (BB) CPU (CPU 1211C, CPU 1212C, CPU 1214C, CPU 1215C,
CPU 1217C) (Page 1461)

Signal module (SM) (digital SM (Page 1381), analog SM (Page 1398), thermocouple SM
(Page 1411), RTD SM (Page 1416), technology SM) (Page 1422)

Table 1-3 S7-1200 expansion modules

Type of module Description

The CPU supports one plug-in expansion
board:

A signal board (SB) provides additional
I/O for your CPU. The SB connects on
the front of the CPU.

A communication board (CB) allows
you to add another communication port
to your CPU.

A battery board (BB) allows you to
provide long term backup of the
realtime clock.

(D Status LEDs on the SB
@ Removable user wiring connector

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 31

Product overview
1.3 Basic HMI panels

Type of module Description

Signal modules (SMs) add additional func-
tionality to the CPU. SMs connect to the
right side of the CPU.

e Digital /0

® Analog I/O

e RTD and thermocouple
e SM 1278 10-Link Master

e SM 1238 Energy Meter (https://
support.industryv.siemens.com/cs/ww/e
n/view/109483435)

(D Status LEDs
® Bus connector slide tab

@ Removable user wiring connector

Communication modules (CMs) and com-
munications processors (CPs) add commu-
nication options to the CPU, such as for
PROFIBUS or RS232/RS485 connectivity
(for PtP, Modbus or USS), or the AS-i mas-
ter.

A CP provides capabilities for other types of
communication, such as connecting to the
CPU over a GPRS, LTE, IEC, DNP3, or
WDC network.

® The CPU supports up to three CMs or
CPs

® Each CMor CP connects to the leftside | (1) Status LEDs
of the CPU (or to the left side of another
CM or CP)

@ Communication connector

1.3 Basic HMI panels

The SIMATIC HMI Basic Panels provide touch-screen devices for basic operator control and
monitoring tasks. All panels have a protection rating for IP65 and have CE, UL, cULus, and
NEMA 4x certification.

The available Basic HMI panels | (Page 1493)are described below:

e KTP400 Basic: 4" Touch screen with 4 configurable keys, a resolution of 480 x 272 and 800
tags

e KTP700 Basic: 7" Touch screen with 8 configurable keys, a resolution of 800 x 480 and 800
tags

e KTP700 Basic DP: 7" Touch screen with 8 configurable keys, a resolution of 800 x 480 and
800 tags

e KTP900 Basic: 9" Touch screen with 8 configurable keys, a resolution of 800 x 480 and 800
tags

S7-1200 Programmable controller
32 System Manual, V4.4 11/2019, A5E02486680-AN

https://support.industry.siemens.com/cs/ww/en/view/109483435
https://support.industry.siemens.com/cs/ww/en/view/109483435
https://support.industry.siemens.com/cs/ww/en/view/109483435

Product overview

1.3 Basic HMI panels

e KTP1200 Basic: 12" Touch screen with 10 configurable keys, a resolution of 800 x 480 and
800 tags

e KTP 1200 Basic DP: 12" Touch screen with 10 configurable keys, a resolution of 800 x 400
and 800 tags

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 33

Product overview

1.3 Basic HMI panels

34

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

New features

The following features are new in the V4.4 release:

functionality

® Open User Communication (OUC) (Page 761) updates:
— Support email with user file attachments (recipes and data logs) via TMAIL_C
— DNS name resolution via TMAIL_C

2

e OPC UA Server (Page 934) - S7-1200 CPUs support a subset of all possible OPC UA

— Support for an "Interfaceld of 0", in which case the CPU selects the appropriate CPU

interface. (Does not include CP modules)
— Support DNS name resolution for TCP/UDP communication

e Updated instructions:
- SCATTER, SCATTER_BLK, GATHER, and GATHER_BLK (Page 262)

® Motion Control: MC_Reset (Confirm error) instruction can acknowledge queued errors
before the user program enables the axis.

e \Webserver
— Continued harmonization of standard Web pages between S7-1200 and S7-1500
— Support firmware updates of configured PROFINET IO devices or modules

— Data log Download /Clear Log_Download_Clear lets you:
- View a list of all data logs on your PLC
- Download a data log from your PLC to your computer
- Delete a data log from your PLC
- Retrieve and clear a data log from your PLC

— User Files Browser

e Two new signal digital modules provide sinking outputs (M-switching of the output load):
- SM1223DI16x24VDC,DQ 16 x24 V DC sinking (6ES7223-1BL32-1XB0) (Page 1389)

- SM 1222 DQ 16 x 24 V DC sinking (6ES7222-1BH32-1BX0) (Page 1384)

Exchanging your V3.0 CPU for a V4.x.x CPU

See also

If you are replacing an S7-1200 V3.0 CPU with an S7-1200 V4.x.x CPU, take note of the
documented differences (Page 1501) in the versions and the required user actions.

Parameters for the PROFINET connection (Page 766)

S7-1200 Functional Safety manual (https://support.industry.siemens.com/cs/ww/en/view/
104547552)

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

35

https://support.industry.siemens.com/cs/ww/en/view/104547552
https://support.industry.siemens.com/cs/ww/en/view/104547552

New features

36

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

STEP 7 provides a user-friendly environment to develop, edit, and monitor the logic needed to
control your application, including the tools for managing and configuring all of the devices in
your project, such as controllers and HMI devices. To help you find the information you need,
STEP 7 provides an extensive online help system.

STEP 7 provides standard programming languages for convenience and efficiency in
developing the control program for your application.

e | AD (ladder logic) (Page 182) is a graphical programming language. The representation is
based on circuit diagrams.

e FBD (Function Block Diagram) (Page 183) is a programming language that is based on the
graphical logic symbols used in Boolean algebra.

e SCL (structured control language) (Page 183) is a text-based, high-level programming
language.

When you create a code block, you select the programming language to be used by that block.
Your user program can utilize code blocks created in any or all of the programming languages.

Note

STEP 7 is the programming and configuration software component of the TIA Portal. The TIA
Portal, in addition to STEP 7, also includes WinCC for designing and executing runtime process
visualization, and includes online help for WinCC as well as STEP 7.

The new features in S7-1200 V4.4 require STEP 7 Professional V16.

3.1 System requirements

You must install STEP 7 with Administrator privileges.

Table 3-1 System requirements

Hardware/software Requirements

Processor type Intel® Core™ i3-6100U, 2.30 GHz or better
RAM 8 GB

Available hard disk space 20 GB on system drive C:\

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 37

STEP 7 programming sofiware

3.1 System requirements

38

Hardware/software

Requirements

Operating systems

You can use STEP 7 with the following operating systems:
e Windows 7 (64-bit):
— Windows 7 Home Premium SP1 **
— Windows 7 Professional SP1
— Windows 7 Enterprise SP1
— Windows 7 Ultimate SP1
e Windows 10 (64-bit):
— Windows 10 Home Version 1709 **
— Windows 10 Home Version 1803 **
— Windows 10 Professional Version 1709
— Windows 10 Professional Version 1803
— Windows 10 Enterprise Version 1709
— Windows 10 Enterprise Version 1803
— Windows 10 Enterprise 2016 LTSB
— Windows 10 loT Enterprise 2015 LTSB
— Windows 10 loT Enterprise 2016 LTSB
® Windows Server (64-bit)
— Windows Server 2012 R2 StdE (full installation)
— Windows Server 2016 Standard (full installation)

Graphics card 32 MB RAM
24-bit color depth
Screen resolution 1024 x 768

Network

100 Mbit/s Ethernet or faster, for communication between STEP 7
and the CPU

* Including all applicable security updates. For more detailed information on operating systems, refer to
the help on Microsoft Windows or the Microsoft Web site.

** Only for Basic editions

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

3.2 Different views to make the work easier

3.2 Different views to make the work easier

STEP 7 provides a user-friendly environment to develop controller logic, configure HMI
visualization, and setup network communication. To help increase your productivity, STEP 7
provides two different views of the project: a task-oriented set of portals that are organized on
the functionality of the tools (Portal view), or a project-oriented view of the elements within the
project (Project view). Choose which view helps you work most efficiently. With a single click,
you can toggle between the Portal view and the Project view.

Portal view
@ Portals for the different tasks
@ Tasks for the selected portal

(® Selection panel for the selected
action

@ Changes to the Project view

Project view

@ Menus and toolbar

@ Project navigator

® Work area

@ Task cards

® Inspector window

® Changes to the Portal view
@ Editor bar

1N H . 1 TR R e Ll RN aFr *

With all of these components in one place, you have easy access to every aspect of your
project. The work area consists of three tabbed views:

e Device view: Displays the device that you have added or selected and its associated
modules

e Network view: Displays the CPUs and network connections in your network

e Topology view: Displays the PROFINET topology of the network including devices, passive
components, ports, interconnections, and port diagnostics

Each view also enables you to perform configuration tasks. The inspector window shows the
properties and information for the object that you have selected in the work area. As you select
different objects, the inspector window displays the properties that you can configure. The
inspector window includes tabs that allow you to see diagnostic information and other
messages.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 39

STEP 7 programming software

3.3 Easy-to-use fools

By showing all of the editors that are open, the editor bar helps you work more quickly and
efficiently. To toggle between the open editors, simply click the different editor. You can also
arrange two editors to appear together, arranged either vertically or horizontally. This feature
allows you to drag and drop between editors.

The STEP 7 Information System provides extensive online help for all of the configuration,
programming, and monitoring tools of STEP 7. You can refer to it for detailed explanations
beyond what this manual provides.

3.3 Easy-to-use tools

3.3.1 Inserting instructions into your user program

STEP 7 provides task cards that contain the instructions for your pro- | Basic instructions
gram. The instructions are grouped according to function. el

¥] General
i} %l

To create your program, you drag instructions from the task card onto
a network.

b) Bitlogic operations

@] Timer operations

+1] Counter operations
<] Comparator operations
4| Math functions

w w w W

P = Move operations

b =g Conversion operations

¥ = Program control operations
» 4 Word legic operations

b = Shift and rotate

S7-1200 Programmable controller
40 System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

3.3 Easy-to-use fools

3.3.2 Accessing instructions from the "Favorites" toolbar

STEP 7 provides a "Favorites" toolbar to give you quick access to the instructions that you
frequently use. Simply click the icon for the instruction to insert it into your network!

O BEEE:EHE &8 (For the "Favorites" in the instruction tree, double-
= click the icon.)

Ak i == {7 = =T L\b

~ | Favorites You can easily customize the "Fa- v Favoiites _
T I e vorites" by adding new instruc- L. L —— i | =t
tions.
'é- Simply drag and drop an instruc-
————— —_— H " H Al — -
~ | Basic instructions tion to the "Favorites”. ~ Basic instructions
Mg L The instruction is now just a click Mame 0
b] General B away! b |] General A
¥ i) Bitlogic operations y ¥ | Bit logic operations
- [@) Timer operations » | @) Timer operations
&_* TP [§ E A c
42 TON ¢ & TON ¢
A TOF [§ & TO0F G
A TOHR 3 3 TONR 1
A =(TP)- g)| TR~ £
)] ~(Tom)- g H)| —{ToN)- 4
A =(TOF)- b H)| =(TOF)= 5
A} ~(TONR)}- T A)| ~{TONE)~ T
)] ~(rm- F H)] ~(am= P
] -1~ L A -FD)- L
» [+3] Counter operations b L4 Counter operations
» (€] Comparator operations = ¢ [€] Comparator operstions w
3.3.3 Creating a complex equation with a simple instruction

The Calculate instruction (Page 232) lets you create a math function that operates on multiple
input parameters to produce the result, according to the equation that you define.

b [] General In the Basic instruction tree, expand the Math functions folder.
¥ [i] Bit logic operations Double-click the Calculate instruction to insert the instruction
¥ [@] Timer operations into your user program.
r I',:_1‘ Counter aperations
4 E Comparator operations
w [£] Math functions
ET| CALCULATE |,
£l A0D
CALCUATE (] The unconfigured Calculate instruc-
o tion provides two input parameters
— and an output parameter.
N1 ouT

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 41

STEP 7 programming software

3.3 Easy-to-use fools

42

CALCULATE Click the "??7?" and select the data types for the input and output pa-

- P rameters. (The input and output parameters must all be the same data
auloie type.)
- Lheal aurj- For this example, select the "Real" data type.

- U5int
1N2 5+ Ulnt
Sint
UDin
Eyte
Word
Dard

Z &0

Click the "Edit equation" icon to enter the equation.

"Edit “Calculate” instruction

Example:

(T« 12 ™ (INT - IN2)

Possible instructions for Real:

+. % 7. 0, Abs, Meg, Exp, **, Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan, Sqr, Sqrt. Round, Ceil, Floor, Trunc

| OF 1 Cancel y |

For this example, enter the following equation for scaling a raw analog value. (The "In" and
"Out" designations correspond to the parameters of the Calculate instruction.)

Out value — ((OUt high ~ Out Iow) / (In high = In Iow)) * (In value ~ In Iow) + Out low

Out = ((in4 - in5) / (in2 - in3)) * (in1 -in3) +in5

Where: Out e (Out) Scaled output value
IN yane (in1) Analog input value
N high (in2) Upper limit for the scaled input value
IN 0w (in3) Lower limit for the scaled input value
Out gn (in4) Upper limit for the scaled output value
Out ., (in5) Lower limit for the scaled output value

In the "Edit Calculate" box, enter the equation with the parameter names:
OUT = ((in4 - in5) / (in2 - in3)) * (in1 - in3) + in5

Edit “Calculate® instruction 5%
ouT = :-un-l-mi- (in2-mn3H " nl -2l + 05
Example

(T« 2) " (N1 = 1H2)
Passible instructions for Real
+.= "1 Abs, Meg, Exp. ", Frac, Ln, Sin, ASin, Cos, ACos, Tan, ATan, Sqr, Sqrt. Round, Ceil, Floor, Trunc

Ok 1 cancel |

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

When you click "OK", the Calculate
instruction creates the inputs re-
quired for the instruction.

Enter the tag names for the values
that correspond to the parameters.

“In_value’

3.3 Easy-to-use fools

CALCLILATE
i |

EN END

OUT = (ind-inSNHn2-in3). ..

M1 OUT = <77
N2

ING

M4

INS 3

CALCULATE I
Real &
EN ENO

OUT = {ind = in5} s in2 = ...

D 22
1M1 OUT — "Dun_walue”

"|n:rl..-g:.']
'IZlm::I':l-g:t: 14
3.34 Adding inputs or outputs to a LAD or FBD instruction

N2 Some of the instructions allow you to create additional inputs or outputs.

® To add aninput or output, click the "Create" icon or right-click on an input stub for one of the
existing IN or OUT parameters and select the "Insert input" command.

® To remove an input or output, right-click on the stub for one of the existing IN or OUT
parameters (when there are more than the original two inputs) and select the "Delete"

command.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

43

STEP 7 programming software

3.3 Easy-to-use fools

3.35 Expandable instructions

Some of the more complex instructions are expandable, displaying only the key inputs and
outputs. To display all the inputs and outputs, click the arrow at the bottom of the instruc-

tion.
%DE3 “PID_3Step_ToO"
" P e—
FID_35tep_1 FID_35tep =
FID_35tep
e —en ENG —
Setpoint
= EHN ENO =
. IRt
Setpoint Input_PER
Input = Actuator_H Cutput_UP =t
Input_FEF = Actuator L Output DR =
= Actuator_H Qutput P Feedback Output_PER
— Actuatar L (i i D) Feedback_PER
Feedback Cutput_FER — -
Feedback_FER L
- —
- — —i Feset —
] State —
. Error — State
= ErrorBits Errari—
— " ErrarBits
-
3.3.6 Selecting a version for an instruction

The development and release cycles for certain sets of instructions (such as Modbus, PID and
motion) have created multiple released versions for these instructions. To help ensure
compatibility and migration with older projects, STEP 7 allows you to choose which version of
instruction to insert into your user program.

Click the icon on the instruction tree task card
Options to enable the headers and columns of the in-
== struction tree.

= || Open user communication

To change the version of the instruction, se-

3 TSEND_C Send dota via Ethemet (TCF . .
Tl St o i Biberrit lect the appropriate version from the drop-
& WAL C Send e-mail Ig;- down list.
w || Others
& TCON Establish cammunication c_. V4.0
& TTISCON Terminate communication . V2.1
2 TSEND Send data via communicati. V4.0
& ROV Receive data via communic.. V4.0

S7-1200 Programmable controller
44 System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software
3.3 Easy-to-use fools

3.3.7 Modifying the appearance and configuration of STEP 7

You can select a variety of settings, such as the appearance of the interface, language, or the
folder for saving your work.

Select the "Settings" command from the "Options" menu to change these settings.

b General I | |
¥ Hardware configurabon Ll 1=
¥ PLC programming General settings
¥ Simubation
¥ Onling & diagnastes Username: |plcsim
FLCaar Userinterface language: |English [=
¥ Visualimiion = =
Mnemanic: | Intermational |=
Keyboard shomouts :
! Show list o recently used
prajects: |8 %] elernents
o [CLead mozt recent project during sta rup
'anhips: Esnnwvun:audmm eampletsly
mshowmldps {contexsensitive help i
availabie}
[Wlopen cascade avtamaticallyin toaltips
S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

STEP 7 programming software

3.3 Easy-fo-use tools

3.3.8

3.3.9

46

Dragging and dropping between editors

& Hoh To help you perform tasks quickly and easily,

i STEP 7 allows you to drag and drop elements
from one editor to another. For example, you
can drag an input from the CPU to the address
of an instruction in your user program.

You must zoom in at least 200% to select the
inputs or outputs of the CPU.

Notice that the tag names are displayed not
onlyin the PLC tag table, but also are displayed

on the CPU.
i F—
To display two editors at one time, use the = [Mindaw, Help : — 1]
"Split editor" menu commands or buttons in | 57 Gk
the tOOIbar' Mexx editor CrrleFo
Frevious editer Crrl+ Shikt+Fé

| [1] splicedivor spaceverticaly
| 5plit ediror space horonzally Shift+F3

To toggle between the editors that have been opened, click the icons in the editor bar.

RO [o]

Changing the operating mode of the CPU

The CPU does not have a physical switch for changing the operating mode (STOP or RUN).

Use the "Start CPU" and "Stop CPU" toolbar buttons to change the operating mode i
of the CPU. 5

When you configure the CPU in the device configuration (Page 141), you configure the start-up
behavior in the properties of the CPU (Page 157).

The "Online and diagnostics" portal also provides an operator panel for changing the operating
mode of the online CPU. To use the CPU operator panel, you must be connected online to the
CPU. The "Online tools" task card displays an operator panel that shows the operating mode

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

3.3 Easy-to-use fools

of the online CPU. The operator panel also allows you to change the operating mode of the
online CPU.

CPU operator panel Use the button on the operator panel to change the operating mode
noifouizscodocor (STOP or RUN). The operator panel also provides an MRES button for
B e f3T0P e resetting the memory.

ERROR STOP
MAINT MRES

The color of the RUN/STOP indicator shows the current operating mode of the CPU. Yellow
indicates STOP mode, and green indicates RUN mode.

From the device configuration in STEP 7 (Page 141) you can also configure the default
operating mode on power up of the CPU (Page 83).

Note

You can also change the operating mode of the CPU from the Web server (Page 939) or the
SIMATIC Automation Tool (https://support.industry.siemens.com/cs/ww/en/view/98161300).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 47

https://support.industry.siemens.com/cs/ww/en/view/98161300

STEP 7 programming software

3.3 Easy-to-use fools

3.3.10 Changing the call type for a DB
HIEC Timar 0 STEP 7 allows you to easily create or change the associ-
e) ation of a DB for an instruction or an FB that is in an FB.
~‘m - - Ales Shiftn L ® You can switch the association between different DBs.
= R o = S ® You can switch the association between a single-
%2 Copy Cutec instance DB and a multi-instance DB.

. s ® You can create an instance DB (if an instance DB is

i b missing or not available).
G0t
Cmtss-reﬁerem:e infarmation ' You can access the "Change call type" command either
Change call type by right-clicking the instruction or FB in the program editor
—— hinsemnemvork ShilteEz - or by selecting the "Block call" command from the "Op-

(B In::rF rrr‘p‘y bos Shi!h.FS tions" menu.

'.'-3} Insert comment

"Call options 3 The "Call options" dialog allows
Data block you to select a single-instance
HB Name [EC_Timer 0 08 |- or multi-instance DB. You can
EcTmeroDs | ifi
e B Timer 0.0 X also select specific DBs from a
instance M drop-down list of available DBs.
The called function block saves its data in its own instance
ﬂ data block
Ml
mstance
More_.
| —— VTR
3.3.1 Temporarily disconnecting devices from a network

From the network view, you can disconnect individual network devices from the subnet.
Because the configuration of the device is not removed from the project, you can easily restore
the connection to the device.

PLC_ T i0-Device_1 [O-Device_2
CPU1214C 1M 151-3FN IM 151-3PN

PLC 1 PLC1

FHE_2

S7-1200 Programmable controller
48 System Manual, V4.4 11/2019, A5E02486680-AN

STEP 7 programming software

3.3 Easy-to-use fools

Right-click the interface port of the network
device and select the "Disconnect from sub-
net" command from the context menu.

10-Dévice _2
1M 151-3PN

Assign to new subnet

Disconnect from subnet h
1)

Assign to new 1O controller
Disconnect from 10 system
(] Highlight 10 system

G Properties

STEP 7 reconfigures the network connections, but does not remove the disconnected device
from the project. While the network connection is deleted, the interface addresses are not

changed.
PLC T 10-Device_1 10-Device_2
CPU1274C IM 151-3PN 1M 151-3PN
PLC Nor assigned
PRAE_2

When you download the new network connections, the CPU must be set to STOP mode.

To reconnect the device, simply create a new network connection to the port of the device.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 49

STEP 7 programming software

3.4 Backward compatibility

3.3.12 Virtual unplugging of devices from the configuration
& Topologyview [Networkview [If Deviceview | STEP 7 provides a storage area for "un-
dr [Fc SRS ROk =]

: plugged" modules. You can drag a module
- Madules nat pluggedin = from the rack to save the configuration of
“ that module. These unplugged modules
~ are saved with your project, allowing you to
reinsert the module in the future without
having to reconfigure the parameters.

One use of this feature is for temporary
maintenance. Consider a scenario where
you might be waiting for a replacement
module and plan to temporarily use a dif-
ferent module as a short-term replace-
[# Topology view | Networkview |OY Devieeview | Ment. You could drag the configured mod-
& [FLct T[] & [&]d | =] ule from the rack to the "Unplugged mod-
ules" and then insert the temporary mod-
ule.

Muodules not
plugged in

3.4 Backward compatibility
STEP 7 V16 supports configuration and programming of the S7-1200 V4.4 CPU.

You can download projects for earlier versions of S7-1200 V4.x CPUs from STEP 7 V13 SP1
or later to an S7-1200 V4.4 CPU. Your configuration and program will be limited to the set of
features and instructions that the previous version of the S7-1200 CPU and your version of
STEP 7 supported.

S7-1200 Programmable controller
50 System Manual, V4.4 11/2019, ASE02486680-AN

STEP 7 programming software

3.4 Backward compatibility

This backwards compatibility makes it possible for you to run programs on S7-1200 V4.4 CPU
models that you previously designed and programmed for older versions.

A\ WARNING

Risks with copying and pasting program logic from older versions of STEP 7

Copying program logic from an older version of STEP 7 can cause unpredictable behavior in
program execution or failures to compile. Different versions of STEP 7 implement program
elements differently. The compiler does not always detect the differences if you made the
changes by pasting from an older version into STEP 7 V15. Executing unpredictable program
logic could result in death or severe personal injury if you do not correct the program.

When using program logic from an older release of STEP 7, always upgrade the entire project
to the latest version of STEP 7. Then you can copy, cut, paste, and edit program logic as
necessary. In STEP 7 V16, you can open a project from STEP 7 V13 SP1 or later. STEP 7 then
performs the necessary compatibility conversions and upgrades the program correctly. Such
upgrade conversions and corrections are necessary for proper program compilation and
execution. If your project is older than STEP 7 V13 SP1, you must upgrade the project
incrementally to STEP 7 V16 (Page 1501).

You cannot download projects for V1.0, V2.0, or V3.0 S7-1200 CPUs to an S7-1200 V4.x CPU.
See the Device exchange and spare parts compatibility (Page 1501) topic for guidelines on
upgrading older projects to a project that you can download.

Note
Projects with S7-1200 V1.x CPU versions

You cannot open a STEP 7 project that contains S7-1200 V1.x CPUs in STEP 7 V15.1. To use
your existing project, you must use STEP 7 V13 SP1 (with any update) to open your project and
convert the S7-1200 V1.x CPUs to V2.0 or later. You can then use STEP 7 V15.1 to open the
saved project with the converted CPUs.

See also
New features (Page 35)

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 51

STEP 7 programming software

3.4 Backward compatibility

52

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Installation 4

4.1 Guidelines for installing S7-1200 devices

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either on
a panel or on a standard rail, and you can orient the S7-1200 either horizontally or vertically.
The small size of the S7-1200 allows you to make efficient use of space.

Electrical equipment standards classify the SIMATIC S7-1200 system as Open Equipment.
You must install the S7-1200 in a housing, cabinet, or electric control room. You should limit
entry to the housing, cabinet, or electric control room to authorized personnel.

The installation should provide a dry environment for the S7-1200. SELV/PELYV circuits are
considered to provide protection against electric shock in dry locations.

The installation should provide the appropriate mechanical strength, flammability protection,
and stability protection that is approved for open equipment in your particular location category
according to applicable electrical and building codes.

Conductive contamination due to dust, moisture, and airborne pollution can cause operational
and electrical faults in the PLC.

If you locate the PLC in an area where conductive contamination may be present, the PLC must
be protected by an enclosure with appropriate protection rating. IP54 is one rating that is
generally used for electronic equipment enclosures in dirty environments and may be
appropriate for your application.

A\ WARNING

Improper installation of the S7-1200 can result in electrical faults or unexpected operation of
machinery.

Electrical faults or unexpected machine operation can result in death, severe personal injury,
and/or property damage.

All instructions for installation and maintenance of a proper operating environment must be
followed to ensure the equipment operates safely.

Separate the S7-1200 devices from heat, high voltage, and electrical noise

As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such as
the S7-1200.

When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing the
exposure to a high-temperature environment will extend the operating life of any electronic
device.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 53

Installation
4.2 Power budget

Provide adequate clearance for cooling and wiring

S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25 mm
of depth between the front of the modules and the inside of the enclosure.

A\ cAuTioN

For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C.

Orient a vertically mounted S7-1200 system as shown in the following figure.

Ensure that the S7-1200 system is mounted correctly.

When planning your layout for the S7-1200 system, allow enough clearance for the wiring and
communications cable connections.

@ Side view @ Vertical installation
@ Horizontal installation @ Clearance area
4.2 Power budget

Your CPU has an internal power supply that provides power for the CPU, the signal modules,
signal board and communication modules and for other 24 VV DC user power requirements.

Refer to the technical specifications (Page 1307) for information about the 5V DC logic budget
supplied by your CPU and the 5V DC power requirements of the signal modules, signal boards,
and communication modules. Refer to 'Calculating a power budget" (Page 1485) to determine
how much power (or current) the CPU can provide for your configuration.

S7-1200 Programmable controller
54 System Manual, V4.4 11/2019, A5E02486680-AN

Installation
4.2 Power budget

The CPU provides a 24 V DC sensor supply that can supply 24 V DC for input points, for relay
coil power on the signal modules, or for other requirements. If your 24 V DC power
requirements exceed the budget of the sensor supply, then you must add an external 24 V DC
power supply to your system. Refer to the technical specifications (Page 1307) for the 24 V DC
sensor supply power budget for your particular CPU.

If you require an external 24 V DC power supply, ensure that the power supply is not connected
in parallel with the sensor supply of the CPU. For improved electrical noise protection, it is
recommended that the commons (M) of the different power supplies be connected.

A\ WARNING

Connecting an external 24 V DC power supply in parallel with the 24 V DC sensor supply can
result in a conflict between the two supplies as each seeks to establish its own preferred
output voltage level

The result of this conflict can be shortened lifetime or immediate failure of one or both power
supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.

The DC sensor supply and any external power supply should provide power to different points.

Some of the 24 VV DC power input ports in the S7-1200 system are interconnected, with a

common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 VV DC power supply
of the CPU, the power input for the relay coil of an SM, or the power supply for a non-isolated

analog input. All non-isolated M terminals must connect to the same external reference
potential.

A\ WARNING

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.

Failure to comply with these guidelines could cause damage or unpredictable operation which
could result in death or severe personal injury and/or property damage.

Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the
same reference potential.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 55

Installation

4.3 Installation and removal procedures

4.3 Installation and removal procedures

4.3.1 Mounting dimensions for the S7-1200 devices

CPU 1211C, CPU 1212C, CPU 1214C
(measurements in mm)

» Bl [« B — B B |&
| | |

|

L]

CPU 1215C, CPU 1217C
(measurements in mm)

<-C1 +:<— c2 —»:4 c3»

< A >

56

«— 5 —»p

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN

Installation

4.3 Installation and removal procedures

Table 4-1 Mounting dimensions (mm)

S7-1200 Devices Width A | Width B Width C
(mm) (mm) (mm)
CPU CPU 1211C and CPU 1212C 90 45 -

CPU 1214C 110 55 --

CPU 1215C 130 65 (top) Bottom:
C1:325

C2:65
C3:32.5

CPU 1217C 150 75 Bottom:
C1:37.5
C2:75

C3:37.5

Signal modules | Digital 8 and 16 point 45 225 -
Analog 2, 4, and 8 point

Thermocouple 4 and 8 point
RTD 4 point

SM 1278 10 Link-Master
Digital DQ 8 x Relay (Changeover) 70 35 --
Analog 16 point 70 35 --
RTD 8 point
SM 1238 Energy Meter module 45 22.5 --

Communication | CM 1241 RS232, and 30 15 -
interfaces CM 1241 RS422/485

CM 1243-5 PROFIBUS master and
CM 1242-5 PROFIBUS slave

CM 1242-2 AS-i Master

CP 1242-7 GPRS V2

CP 1243-7 LTE-US

CP 1243-7 LTE-EU

CP 1243-1

CP 1243-8 IRC

RF120C

TS (TeleService) Adapter IE Advanced '
TS (Teleservice) Adapter IE Basic'

TS Adapter 30 15 -
TS Module 30 15 --

' Before installing the TS (TeleService) Adapter IE Advanced or |E Basic, you must first connect the TS
Adapter and a TS module. The total width ("width A") is 60 mm.

Each CPU, SM, CM, and CP supports mounting on either a DIN rail or on a panel. Use the DIN
rail clips on the module to secure the device on the rail. These clips also snap into an extended
position to provide screw mounting positions to mount the unit directly on a panel. The interior
dimension of the hole for the DIN clips on the device is 4.3 mm.

A 25 mm thermal zone must be provided above and below the unit for free air circulation.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 57

Installation

4.3 Installation and removal procedures

Installing and removing the S7-1200 devices

The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are provided
to secure the device on the DIN rail. The clips also snap into an extended position to provide a
screw mounting position for panel-mounting the unit.

@D DIN rail installation ® Panel installation
@ DINrail clip in latched position @ Clip in extended position for panel mounting

Before you install or remove any electrical device, ensure that the power to that equipment has
been turned off. Also, ensure that the power to any related equipment has been turned off.

A\ WARNING

Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage due
to electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

A\ WARNING

Incorrect installation of an S7-1200 module may cause the program in the $7-1200 to function
unpredictably.

Failure to replace an S7-1200 device with the same model, orientation, or order could result

in death, severe personal injury and/or property damage due to unexpected equipment
operation.

Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

S7-1200 Programmable controller
58 System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.3 Installation and removal procedures

A\ WARNING
Do not disconnect equipment when a flammable or combustible atmosphere is present.

Disconnection of equipment when a flammable or combustible atmosphere is present may
cause a fire or explosion which could result in death, serious injury and/or property damage.

Always follow appropriate safety precautions when a flammable or combustible atmosphere
is present.

Note
Electrostatic discharge can damage the device or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap whenever
you handle the device.

4.3.2 Installing and removing the CPU

You can install the CPU on a panel or on a DIN rail.

Note

Attach any communication modules to the CPU and install the assembly as a unit. Install signal
modules separately after the CPU has been installed.

Consider the following when installing the units on the DIN rail or on a panel:

® For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position and
that the lower DIN rail clip is in the extended position for the CPU and attached CMs.

e After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

® For panel mounting, make sure the DIN rail clips are pushed to the extended position.
To install the CPU on a panel, follow these steps:

1. Locate, drill, and tap the mounting holes (M4), using the dimensions shown in table,
Mounting dimensions (mm) (Page 56).

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 59

Installation

4.3 Installation and removal procedures

Table 4-2

3. Extend the mounting clips from the module. Make sure the DIN rail clips on the top and

bottom of the CPU are in the extended position.

. Secure the module to the panel, using a Pan Head M4 screw with spring and flat washer. Do

not use a flat head screw.

Note

The type of screw will be determined by the material upon which it is mounted. You should
apply appropriate torque until the spring washer becomes flat. Avoid applying excessive
torque to the mounting screws. Do not use a flat head screw.

Note

Using DIN rail stops could be helpful if your CPU is in an environment with high vibration
potential or if the CPU has been installed vertically. Use an end bracket (8WA1808 or
8WA1805) on the DIN rail to ensure that the modules remain connected. If your system is
in a high-vibration environment, then panel-mounting the CPU will provide a greater level of
vibration protection.

Installing the CPU on a DIN rail

Task

Procedure

1. Install the DIN rail. Secure the rail to the mounting panel every 75 mm.

2. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

Hook the CPU over the top of the DIN rail.
Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the rail.
Rotate the CPU down into position on the rail.

o g A~ w

Push in the clips to latch the CPU to the rail.

60

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Installation

Table 4-3 Removing the CPU from a DIN rail

4.3 Installation and removal procedures

Task

Procedure

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Disconnect the 1/0 connectors, wiring, and cables from the
CPU (Page 65).

3. Remove the CPU and any attached communication modules
as a unit. All signal modules should remain installed.

4. If an SM is connected to the CPU, retract the bus connector:

— Place a screwdriver beside the tab on the top of the signal
module.

— Press down to disengage the connector from the CPU.
— Slide the tab fully to the right.

5. Remove the CPU:
— Pull out the DIN rail clip to release the CPU from the rail.

— Rotate the CPU up and off the rail, and remove the CPU
from the system.

4.3.3 Installing and removing an SB, CB, or BB

Table 4-4 Installing an SB, CB, or BB 1297

Task

Procedure

1.

Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Remove the top and bottom terminal block covers from the CPU.

Place a screwdriver into the slot on top of the CPU at the rear of the
cover.

4. Gently pry the cover straight up and remove it from the CPU.

5. Place the module straight down into its mounting position in the top

of the CPU.
Firmly press the module into position until it snaps into place.

7. Replace the terminal block covers.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

61

Installation

4.3 Installation and removal procedures

Table 4-5 Removing an SB, CB or BB 1297

Procedure

1. Ensure that the CPU and all S7-1200 equipment are disconnected
from electrical power.

2. Remove the top and bottom terminal block covers from the CPU.

3. Remove the signal board connector (if installed) by gently
disengaging with a screwdriver.

4. Place a screwdriver into the slot on top of the module.

5. Gently pry the module up to disengage it from the CPU.

6. Without using a screwdriver, remove the module straight up from
its mounting position in the top of the CPU.

7. Replace the cover onto the CPU.

8. Replace the terminal block covers.

Installing or replacing the battery in the BB 1297 battery board

The BB 1297 requires battery type CR1025. The battery is not included with the BB 1297 and
must be purchased. To install or replace the battery, follow these steps:

1. In the BB 1297, install a new battery with the positive side of the battery on top, and the
negative side next to the printed wiring board.

2. The BB 1297 is ready to be installed in the CPU. Ensure that the CPU and all S7-1200
equipment are disconnected from electrical power and follow the installation directions
above to install the BB 1297.

To replace the battery in the BB 1297:

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical power.
Remove the BB 1297 from the CPU following the removal directions above.

2. Carefully remove the old battery using a small screwdriver. Push the battery out from under
the clip.

3. Installa new CR1025 replacement battery with the positive side of the battery on top and the
negative side next to the printed wiring board.

4. Re-install the BB 1297 battery board following the installation directions above.

A\ WARNING

Installing an unspecified battery in the BB 1297, or otherwise connecting an unspecified
battery to the circuit can result in fire or component damage and unpredictable operation of
machinery.

Fire or unpredictable operation of machinery can result in death, severe personal injury, or
property damage.

Use only the specified CR1025 battery for backup of the Real-time clock.

S7-1200 Programmable controller
62 System Manual, V4.4 11/2019, A5E02486680-AN

Installation

43.4 Installing and removing an SM

Table 4-6 Installing an SM

4.3 Installation and removal procedures

Task

Procedure

Install your SM after installing the CPU.

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Remove the cover for the connector from the right side of the
CPU:

— Insert a screwdriver into the slot above the cover.
— Gently pry the cover out at its top and remove the cover.
3. Retain the cover for reuse.

Connect the SM to the CPU:
1. Position the SM beside the CPU.
2. Hook the SM over the top of the DIN rail.

3. Pull out the bottom DIN rail clip to allow the SM to fit over the
rail.

4. Rotate the SM down into position beside the CPU and push
the bottom clip in to latch the SM onto the rail.

Extending the bus connector makes both mechanical and electri-
cal connections for the SM.

1. Place a screwdriver beside the tab on the top of the SM.

2. Slide the tab fully to the left to extend the bus connector into
the CPU.

Follow the same procedure to install a signal module to a signal
module.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

63

Installation

4.3 Installation and removal procedures

Table 4-7 Removing an SM

Task Procedure

You can remove any SM without removing the CPU or other SMs in place.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Remove the I/O connectors and wiring from the SM (Page 65).

3. Retract the bus connector.

— Place a screwdriver beside the tab on the top of the SM.

— Press down to disengage the connector from the CPU.
— Slide the tab fully to the right.
If there is another SM to the right, repeat this procedure for that SM.

Remove the SM:

1. Pull out the bottom DIN rail clip to release the SM from the rail.

2. Rotate the SM up and off the rail. Remove the SM from the system.

3. If required, cover the bus connector on the CPU to avoid contamination.
Follow the same procedure to remove a signal module from a signal module.

43.5 Installing and removing a CM or CP

Attach any communication modules to the CPU and install the assembly as a unit, as shown
in Installing and removing the CPU (Page 59).

Table 4-8 Installing a CM or CP

Task Procedure
1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Attach the CM to the CPU before installing the assembly as
a unit to the DIN rail or panel.

3. Remove the bus cover from the left side of the CPU:

— Insert a screwdriver into the slot above the bus cover.

— Gently pry out the cover at its top.
4. Remove the bus cover. Retain the cover for reuse.
5. Connect the CM or CP to the CPU:

— Align the bus connector and the posts of the CM with
the holes of the CPU

— Firmly press the units together until the posts snap into
place.

6. Install the CPU and CP on a DIN rail or panel.

S7-1200 Programmable controller
64 System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.3 Installation and removal procedures

Table 4-9 Removing a CM or CP

Task Procedure

Remove the CPU and CM as a unit from the DIN rail or panel.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Remove the I/0O connectors and all wiring and cables from the CPU and CMs.

3. For DIN rail mounting, move the lower DIN rail clips on the CPU and CMs to the
extended position.

4. Remove the CPU and CMs from the DIN rail or panel.
5. Grasp the CPU and CMs firmly and pull apart.

NOTICE

Separate modules without using a tool.

Do not use a tool to separate the modules because this can damage the units.

43.6 Removing and reinstalling the S7-1200 terminal block connector

The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy.

Table 4-10 Removing the connector

Task Procedure

Prepare the system for terminal block connector removal by removing the power from the
CPU and opening the cover above the connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical
power.

2. Inspect the top of the connector and locate the slot for the tip of the screwdriver.

3. Insert a screwdriver into the slot.

4. Gently pry the top of the connector away from the CPU. The connector will release
with a snap.

5. Grasp the connector and remove it from the CPU.

Wiy ?

Wiy

|I|||-II
Ul
gl

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 65

Installation

4.3 Installation and removal procedures

Table 4-11 Installing the connector

Task Procedure

Prepare the components for terminal block installation by removing power from the CPU
and opening the cover for connector.

1. Ensure that the CPU and all S7-1200 equipment are disconnected from electrical

power.

""‘V'I\I:I‘\':".:[:" : 2. Align the connector with the pins on the unit.
) ([

3. Align the wiring edge of the connector inside the rim of the connector base.

4. Press firmly down and rotate the connector until it snaps into place.
Check carefully to ensure that the connector is properly aligned and fully engaged.

4.3.7 Installing and removing the expansion cable

The S7-1200 expansion cable provides additional flexibility in configuring the layout of your
S7-1200 system. Only one expansion cable is allowed per CPU system. You install the
expansion cable either between the CPU and the first SM, or between any two SMs.

Table 4-12 Installing and removing the male connector of the expansion cable

Task Procedure

To install the male connector:

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Push the connector into the bus connector on the right
side of the signal module or CPU.

To remove the male connector:

1. Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

2. Pull out the male connector to release it from the signal
module or CPU.

S7-1200 Programmable controller
66 System Manual, V4.4 11/2019, ASE02486680-AN

Installation

4.3 Installation and removal procedures

Table 4-13 Installing the female connector of the expansion cable

Task

Procedure

To engage the connector, you must slide the connector tab
all the way to the left. The connector tab must be locked into
place.

. Ensure that the CPU and all S7-1200 equipment are

disconnected from electrical power.

Place the female connector to the bus connector on the
left side of the signal module.

Slip the hook extension of the female connector into the

housing at the bus connector and press down slightly to

engage the hook.

Lock the connector into place:

— Place a screwdriver beside the tab on the top of the
signal module.

— Slide the tab fully to the left.

Table 4-14 Removing the female connector of the expansion cable

Task

Procedure

1.

Ensure that the CPU and all S7-1200 equipment are
disconnected from electrical power.

Unlock the connector:

— Place a screwdriver beside the tab on the top of the
signal module.

— Press down slightly and slide the tab fully to the right.

Lift the connector up slightly to disengage the hook
extension.

Remove the female connector.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

67

Installation

4.3 Installation and removal procedures

Note
Installing the expansion cable in a vibration environment

If the expansion cable is connected to modules that move, or are not firmly fixed, the cable male
end snap-on connection can gradually become loose.

Use a cable tie to fix the male end cable on the DIN-rail (or other place) to provide extra strain
relief.

Avoid using excessive force when you pull the cable during installation. Ensure the cable-
module connection is in the correct position once installation is complete.

4.3.8 TS (TeleService) adapter

4.3.8.1 Connecting the TeleService adapter

Before installing the TS (TeleService) Adapter |IE Basic or TS (TeleService) Adapter IE
Advanced, you must first connect the TS Adapter and a TS module.

Available TS modules:
® TS module RS232
® TS module Modem
® TS module GSM
e TS module ISDN

Note

The TS module can be damaged if you touch the contacts of the plug connector @ of the
TS module.

Follow ESD guidelines in order to avoid damaging the TS module through electrostatic
discharge. Before connecting a TS module and TS Adapter, make sure that both are in an idle
state.

S7-1200 Programmable controller
68 System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.3 Installation and removal procedures

@ TS module @ Plug connector from the TS module

@ TS Adapter ® Cannot be opened

® Elements ® Ethernet port
Note
Before connecting a TS module and TS adapter basic unit, ensure that the contact pins @ are
not bent.

When connecting, ensure that the male connector and guide pins are positioned correctly.

Only connect a TS module into the TS adapter. Do not force a connection of the TS adapter to
a different device, such as an S7-1200 CPU. Do not change the mechanical construction of the
connector, and do not remove or damage the guide pins.

4.3.8.2 Installing the SIM card
Locate the SIM card slot on the underside of the TS module GSM.

Note

The SIM card may only be removed or inserted if the TS module GSM is de-energized.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 69

Installation

4.3 Installation and removal procedures

4.3.8.3

70

Table 4-15

Installing the SIM card

Task

Procedure

Use a sharp object to press the eject
button of the SIM card tray (in the direc-
tion of the arrow) and remove the SIM
card tray.

Place the SIM card in the SIM card tray
as shown and put the SIM card tray
back into its slot.

@TS Module GSM

® SIM card

® SIM card tray

Note

Ensure that the SIM card is correctly oriented in the card tray. Otherwise, the SIM card will not
make connection with the module, and the eject button may not remove the card tray.

Installing the TS adapter unit on a DIN rail

Prerequisites: You must have connected the TS Adapter and a TS module together, and the

DIN rail must have been installed.

Note

If you install the TS unit vertically or in high-vibration environment, the TS module can become
disconnected from the TS Adapter. Use an end bracket 8WWA1808 on the DIN rail to ensure that
the modules remain connected.

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

Installation

4.3 Installation and removal procedures

Table 4-16 Installing and removing the TS Adapter

Task

Procedure

Installation:
1.

2. Rotate the unit back until it engages.

3. Push in the DIN rail clip on each module to attach

Hook the TS Adapter with attached TS module @ on
the DIN rail @.

each module to the rail.

Removal:
1.

2. Remove power from the TS Adapter.

3. Use a screwdriver to disengage the rail clips on both

Remove the analog cable and Ethernet cable from
the underside of the TS Adapter.

modules.

Rotate the unit upwards to remove the unit from the
DIN rail.

A\ WARNING

operation.

Safety requirements for installing or removing the TS Adapter.

Before you remove power from the unit, disconnect the grounding of the TS Adapter by
removing the analog cable and Ethernet cable. Failure to observe this precaution could result
in death, severe personal injury and/or property damage due to unexpected equipment

Always follow these requirements when installing or removing the TS Adapter.

4.3.84 Installing the TS adapter on a panel

Prerequisites: You must have connected the TS Adapter and TS module.

1. Move the attachment slider to the backside of the TS Adapter and TS module in the

direction of the arrow until it engages.

2. Screw the TS Adapter and TS module to the position marked with @ to the designated

assembly wall.

The following illustration shows the TS Adapter from behind, with the attachment sliders @ in

both positions:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

71

Installation

4.4 Wiring guidelines

v
I a -
oM
QHE”E
O

<=lo_ =[]

@ Attachment slider
@ Drill holes for wall mounting

4.4 Wiring guidelines

Proper grounding and wiring of all electrical equipment is important to help ensure the optimum
operation of your system and to provide additional electrical noise protection for your
application and the S7-1200. Refer to the technical specifications (Page 1307) for the S7-1200
wiring diagrams.

Prerequisites

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has been
turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local

S7-1200 Programmable controller
72 System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.4 Wiring guidelines

standards. Contact your local authorities to determine which codes and standards apply to your
specific case.

A\ WARNING

Installation or wiring the S7-1200 or related equipment with power applied could cause electric
shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury, and/or damage due to
electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-1200
system. Electronic control devices, such as the S7-1200, can fail and can cause unexpected
operation of the equipment that is being controlled or monitored. For this reason, you should
implement safeguards that are independent of the S7-1200 to protect against possible
personal injury or equipment damage.

A\ WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled
equipment.

Such unexpected operations could result in death, severe personal injury and/or property
damage.

Use an emergency stop function, electromechanical overrides, or other redundant safeguards
that are independent of the S7-1200.

Guidelines for isolation

S7-1200 AC power supply boundaries and I/0 boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such as
optical couplers, capacitors, transformers, and relays have been approved as providing safe
separation. Only circuits rated for AC line voltage include safety isolation to other circuits.
Isolation boundaries between 24 V DC circuits are functional only, and you should not depend
on these boundaries for safety.

The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to EN
61131-2.

To maintain the safe character of the S7-1200 low voltage circuits, external connections to
communications ports, analog circuits, and all 24 V DC nominal power supply and I/O circuits

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 73

Installation

4.4 Wiring guidelines

must be powered from approved sources that meet the requirements of SELV, PELV, Class 2,
Limited Voltage, or Limited Power according to various standards.

A\ WARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC line
can result in hazardous voltages appearing on circuits that are expected to be touch safe, such
as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could cause electric shock resulting in death, severe personal
injury and/or property damage.

Only use high voltage to low voltage power converters that are approved as sources of touch
safe, limited voltage circuits.

Guidelines for grounding the S7-1200

The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This single
point should be connected directly to the earth ground for your system.

All ground wires should be as short as possible and should use a large wire size, such as 2 mm?
(14 AWG).

When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for wiring the S7-1200

74

When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits, and
from all output circuits. Provide over-current protection, such as a fuse or circuit breaker, to limit
fault currents on supply wiring. Consider providing additional protection by placing a fuse or
other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges. For more information, see Surge immunity (Page 1307) in the General technical
specifications section.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current.

Wire and cable should have a temperature rating 30 °C higher than the ambient temperature
around the S7-1200 (for example, a minimum of 85 °C-rated conductors for 55 °C ambient
temperature). You should determine other wiring type and material requirements from the
specific electrical circuit ratings and your installation environment.

Use shielded wires for optimum protection against electrical noise. Typically, grounding the

shield at the S7-1200 gives the best results. You should ground communication cable shields
to S7-1200 communication connector shells using connectors that engage the cable shield, or
by bonding the communication cable shields to a separate ground. You should ground other

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.4 Wiring guidelines

cable shields using clamps or copper tape around the shield to provide a high surface area
connection to the grounding point.

When wiring input circuits that are powered by an external power supply, include an overcurrent
protection device in that circuit. External protection is not necessary for circuits that are
powered by the 24 V DC sensor supply from the S7-1200 because the sensor supply is already
current-limited.

All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed securely
into the connector.

To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications (Page 1365) for the amount of
isolation provided and the location of the isolation boundaries. Circuits rated for AC line voltage
include safety isolation to other circuits. Isolation boundaries between 24 V DC circuits are
functional only, and you should not depend on these boundaries for safety.

A summary of Wiring rules for the S7-1200 CPUs, SMs and SBs is shown below:

Table 4-17 Wiring rules for S7-1200 CPUs, SMs, and SBs

Wiring rules for... CPU and SM connector SB connector

Connection technology Push In | Screw Screw

Connectible conductor 2 mm?to 0.3 mm? (14 AWG to 22 AWG) 1.3 mm? to 0.3 mm?
cross-sections for stand- (16 AWG to 22 AWG)

ard wires

Number of wires per con- | 1 or combination of 2 wires in a double sleeve up to 2 mm? | 1 or combination of 2 wires up to
nection (total) 1.3 mm? (total)

Wire strip length Using sleeves for secure 6.4 mm 6.3to 7 mm

electic connection

Tightening torque* (maxi- | n/a 0.56 N-m (5 inch-pounds) 0.33 N-m (3 inch-pounds)
mum)
Tool 2.5 to 3.0 mm flathead screwdriver

* To avoid damaging the connector, be careful that you do not over-tighten the screws.

See also

Note

Ferrules or end sleeves on stranded conductors reduce the risk of stray strands causing short
circuits. Ferrules longer than the recommended strip length should include an insulating collar
to prevent shorts due to side movement of conductors. Cross-sectional area limits for bare
conductors also apply to ferrules.

Technical specifications (Page 1307)

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 75

Installation

4.4 Wiring guidelines

Guidelines for lamp loads

Lamp loads, including LED lamp loads, are damaging to relay contacts because of the high turn-
on surge current. This surge current will nominally be 10 to 15 times the steady state current for
a Tungsten lamp. A replaceable interposing relay or surge limiter is recommended for lamp
loads that will be switched a large number of times during the lifetime of the application.

Guidelines for inductive loads

76

Use suppressor circuits with inductive loads to limit the voltage rise when a control output turns
off. Suppressor circuits protect your outputs from premature failure caused by the high voltage
transient that occurs when current flow through an inductive load is interrupted.

In addition, suppressor circuits limit the electrical noise generated when switching inductive
loads. High frequency noise from poorly suppressed inductive loads can disrupt the operation
of the PLC. Placing an external suppressor circuit so that it is electrically across the load and
physically located near the load is the most effective way to reduce electrical noise.

S7-1200 DC outputs include internal suppressor circuits that are adequate for inductive loads
in most applications. Since S7-1200 relay output contacts can be used to switch either a DC or
an AC load, internal protection is not provided.

A good suppressor solution is to use contactors and other inductive loads for which the
manufacturer provides suppressor circuits integrated in the load device, or as an optional
accessory. However, some manufacturer provided suppressor circuits may be inadequate for
your application. An additional suppressor circuit may be necessary for optimal noise reduction
and contact life.

For AC loads, a metal oxide varistor (MOV) or other voltage clamping device may be used with
a parallel RC circuit, but is not as effective when used alone. An MOV suppressor with no
parallel RC circuit often results in significant high frequency noise up to the clamp voltage.

A well-controlled turn-off transient will have a ring frequency of no more than 10 kHz, with less
than 1 kHz preferred. Peak voltage for AC lines should be within +/- 1200 V of ground. Negative
peak voltage for DC loads using the PLC internal suppression will be ~40 V below the 24 V DC
supply voltage. External suppression should limit the transient to within 36 V of the supply to
unload the internal suppression.

Note

The effectiveness of a suppressor circuit depends on the application and must be verified for
your particular usage. Ensure that all components are correctly rated and use an oscilloscope
to observe the turn-off transient.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Installation

4.4 Wiring guidelines

Typical suppressor circuit for DC or relay outputs that switch DC inductive loads

ON©O

0 00 ©

Ll g

1N4001 diode or equivalent

8.2 V Zener (DC outputs),
36 V Zener (Relay outputs)

Output point
M, 24 V reference

In most applications, the addition of a diode (A)
across a DC inductive load is suitable, but if your ap-
plication requires faster turn-off times, then the addi-
tion of a zener diode (B) is recommended. Be sure to
size your zener diode properly for the amount of cur-
rent in your output circuit.

Typical suppressor circuit for relay outputs that switch AC inductive loads

® @

— ——wW—

MOV

(3) -

o

@ See table for C value
® See table for R value
® Output point

Ensure that the working voltage of the metal oxide
varistor (MOV) is at least 20% greater than the nomi-
nal line voltage.

Choose pulse-rated, non-inductive resistors, and ca-
pacitors recommended for pulse applications (typical-
ly metal film). Verify the components meet average
power, peak power, and peak voltage requirements.

If you design your own suppressor circuit, the following table suggests resistor and capacitor
values for a range of AC loads. These values are based on calculations with ideal component
parameters. | rms in the table refers to the steady-state current of the load when fully ON.

Table 4-18 AC suppressor circuit resistor and capacitor values
Inductive load Suppressor values
I rms 230 VAC 120V AC Resistor Capacitor
Amps VA VA Q W (power rating) nF
0.02 4.6 2.4 15000 0.1 15
0.05 11.5 6 5600 0.25 470
0.1 23 12 2700 0.5 100
0.2 46 24 1500 1 150
0.5 115 60 560 25 470
S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 77

Installation

4.4 Wiring guidelines

Inductive load Suppressor values
230 120 270 5 1000
2 460 240 150 10 1500

Conditions satisfied by the table values:

Maximum turn-off transition step < 500 V

Resistor peak voltage < 500 V

Capacitor peak voltage < 1250 V

Suppressor current < 8% of load current (50 Hz)
Suppressor current < 11% of load current (60 Hz)
Capacitor dV/dt < 2 V/pus

Capacitor pulse dissipation : j(dv/dt)2 dt < 10000 V?/us
Resonant frequency < 300 Hz

Resistor power for 2 Hz max switching frequency
Power factor of 0.3 assumed for typical inductive load

Guidelines for differential inputs and outputs

Differential inputs and outputs behave differently than standard inputs and outputs. There are
two pins per differential input and output. Determining whether a differential input or output is
on or off requires that you measure the voltage difference between these two pins.

See the detailed specifications for the CPU 1217C in Appendix A (Page 1365).

S7-1200 Programmable controller

78 System Manual, V4.4 11/2019, ASE02486680-AN

PLC concepts 5

5.1 Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:

® Organization blocks (OBs) define the structure of the program. Some OBs have predefined
behavior and start events, but you can also create OBs with custom start events.

® Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain the data values for that instance of the FB call.
You can call an FB multiple times, each time with a unique instance DB. Calls to the same
FB with different instance DBs do not affect the data values in any of the other instance DBs.

e Data blocks (DBs) store data that can be used by the program blocks.

Execution of the user program begins with one or more optional startup organization blocks
(OBs) which execute once upon entering RUN mode, followed by one or more program cycle
OBs that execute cyclically. You can also associate an OB with an interrupt event, which can
be either a standard event or an error event. These OBs execute whenever the corresponding
standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from an
OB or from another FC or FB, down to the following nesting depths:

® 16 from the program cycle or startup OB

® 6 from any interrupt event OB
Note: Safety programs use two nesting levels. The user program therefore has a nesting
depth of four in safety programs.

FCs are not associated with any particular data block (DB). FBs are tied directly to a DB and use
the DB for passing parameters and storing interim values and results.

The size of the user program, data, and configuration is limited by the available load memory
and work memory in the CPU. There is no specific limit to the number of each individual OB, FC,
FB and DB block. However, the total number of blocks is limited to 1024.

Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing background processing. The cycle is referred to as a scan cycle or
scan.

Your S7-1200 automation solution can consist of a central rack with the S7-1200 CPU and
additional modules. The term "central rack" refers to either the rail or panel installation of the

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 79

PLC concepts

5.1 Execution of the user program

CPU and associated modules. The modules (SM, SB, BB, CB, CM or CP) are detected and
logged in only upon powerup.

® Inserting or removing a module in the central rack under power (hot) is not supported. Never
insert or remove a module from the central rack when the CPU has power.

A\ WARNING
Safety requirements for inserting or removing modules

Failure to disable all power to the CPU before insertion or removal of a module (SM, SB,
BB, CD, CM or CP) from the central rack could cause damage or unpredictable behaviour
which could result in death or severe personal injury and/or property damage.

Always remove power from the CPU and central rack and follow appropriate safety
precautions before inserting or removing a module from the central rack.

® You can insertorremove a SIMATIC memory card while the CPU is under power. However,
inserting or removing a memory card when the CPU is in RUN mode causes the CPU to go
to STOP mode.

NOTICE
Risks with removing memory card when CPU is in RUN mode.

Insertion or removal of a memory card when the CPU is in RUN mode causes the CPU to
go to STOP, which might result in damage to the equipment or the process being
controlled.

Whenever you insert or remove a memory card, the CPU immediately goes to STOP
mode. Before inserting or removing a memory card, always ensure that the CPU is not
actively controlling a machine or process. Always install an emergency stop circuit for your
application or process.

® |fyou insert or remove a module in a distributed I/O rack (AS-i, PROFINET, or PROFIBUS)
when the CPU is in RUN mode, the CPU generates an entry in the diagnostics buffer,
executes the pull or plug of modules OB if present, and by default remains in RUN mode.

Process image update and process image partitions

80

The CPU updates local digital and analog I/O points synchronously with the scan cycle using
an internal memory area called the process image. The process image contains a snapshot of
the physical inputs and outputs (the physical I/O points on the CPU, signal board, and signal
modules).

You can configure 1/O points to be updated in the process image every scan cycle or when a
specific event interrupt occurs. You can also configure an I/O point to be excluded from process
image updates. For example, your process might only need certain data values when an event
such as a hardware interrupt occurs. By configuring the process image update for these 1/0
points to be associated with a partition that you assign to a hardware interrupt OB, you avoid
having the CPU update data values unnecessarily every scan cycle when your process does
not need a continual update.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

For /O thatis updated every scan cycle, the CPU performs the following tasks during each scan
cycle:

® The CPU writes the outputs from the process image output area to the physical outputs.

® The CPU reads the physical inputs just prior to the execution of the user program and stores
the input values in the process image input area. These values thus remain consistent
throughout the execution of the user instructions.

® The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.
This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.

For controlling whether your process updates I/O points automatically on every scan cycle, or
upon the triggering of events, the S7-1200 provides five process image partitions. The first
process image partition, PIPO, is designated for I/O that is to be automatically updated every
scan cycle, and is the default assignment. You can use the remaining four partitions, PIP1,
PIP2, PIP3, and PIP4 for assigning I/O process image updates to various interrupt events. You
assign 1/0 to process image partitions in Device Configuration and you assign process image
partitions to interrupt events when you create interrupt OBs (Page 172) or edit OB properties
(Page 172).

By default, when you insert a module in the device view, STEP 7 sets its I/O process image
update to "Automatic update”. For I/O configured for "Automatic update”, the CPU handles the
data exchange between the module and the process image area automatically during every
scan cycle.

To assign digital or analog points to a process image partition, or to exclude I/O points from
process image updates, follow these steps:

1. View the Properties tab for the appropriate device in Device configuration.
2. Expand the selections under "General" as necessary to locate the desired 1/O points.

3. Select "I/O addresses".

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 81

PLC concepts

5.1 Execution of the user program

82

4. Optionally select a specific OB from the "Organization block" drop-down list.

5. From the "Process image" drop-down list, change "Automatic update" to "PIP1", "PIP2",
"PIP3", "PIP4" or "None". A selection of "None" means that you can only read from and write
to this 1/0 using immediate instructions. To add the points back to the process image
automatic update, change this selection back to "Automatic update".

oS Properties |Malate L)%
Ger‘u:ul IIIJI.|-|t Texts

¥ Gemarsl

V0 adckeases

Input addepsses
Srart addeess: 0
¢ Cigasl owpues
U addeeses
i Organimtiee Bledh — (Aulamatic ussats
Fraceas imags Autcmabc update
5 Mone
Drtput addresses = Mt updece

Srar addeess Tl g g I}
L
s L

Crganumtion block P

Praces image

Userinperface langueges

CONRECHio resurces
Ceriew ol addnesses

v |

You can immediately read physical input values and immediately write physical output values
when an instruction executes. An immediate read accesses the current state of the physical
input and does not update the process image input area, regardless of whether the point is
configured to be stored in the process image. An immediate write to the physical output updates
both the process image output area (if the point is configured to be stored in the process image)
and the physical output point. Append the suffix ":P" to the 1/0 address if you want the program
to immediately access 1/O data directly from the physical point instead of using the process
image.

Note
Use of process image partitions

If you assign 1/0O to one of the process image partitions PIP1 - PIP4, and do not assign an OB
to that partition, then the CPU never updates that I/O to or from the process image. Assigning
I/O to a PIP that does not have a corresponding OB assignment, is the same as assigning the
process image to "None". You can read the I/O directly from the physical I/O with an immediate
read instruction, or write to the physical /0O with an immediate write instruction. The CPU does
not update the process image.

The CPU supports distributed 1/0 for PROFINET, PROFIBUS, and AS-i networks (Page 739).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

51.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode. Status
LEDs on the front of the CPU indicate the current mode of operation.

® |n STOP mode, the CPU is not executing the program. You can download a project.

® |n STARTUP mode, the startup OBs (if present) execute once. The CPU does not process
interrupt events during the startup mode.

® |n RUN mode, the program cycle OBs execute repeatedly. Interrupt events can occur at any
point during RUN mode, which cause the corresponding interrupt event OBs to execute.
You can download some parts of a project in RUN mode (Page 1287).

The CPU supports a warm restart for entering the RUN mode. Warm restart does not include
amemory reset. The CPU initializes all non-retentive system and user data at warm restart, and
retains the values of all retentive user data.

A memory reset clears all work memory, clears retentive and non-retentive memory areas,
copies load memory to work memory, and sets outputs to the configured "Reaction to CPU
STOP". A memory reset does not clear the diagnostics buffer or the permanently saved values
of the IP address.

You can configure the "startup after POWER ON" setting of the CPU. This configuration item
appears under the "Device configuration” for the CPU under "Startup”. Upon powering up, the
CPU performs a sequence of power-up diagnostic checks and system initialization. During
system initialization, the CPU deletes all non-retentive bit (M) memory and resets all non-
retentive DB contents to the initial values from load memory. The CPU retains retentive bit (M)
memory and retentive DB contents and then enters the appropriate operating mode. Certain

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 83

PLC concepts

5.1 Execution of the user program

detected errors prevent the CPU from entering the RUN mode. The CPU supports the following
configuration choices:

® No restart (stay in STOP mode)
e Warm restart - RUN

e Warm restart - mode prior to POWER OFF
Startup

Startup after FOWER ON: | Warm restart - RUN -

. STart (stay in o7)
Comparison preset ta actual Mo restart (stay in STOP mode
cnnﬁgumtiun: Warm restart - RUN

Warm restart - mode before POWER OFF h

Configuration time for central
and distributed I0: | 50000 ms

[#] 0Bs should be interruptible

NOTICE

Repairable faults can cause the CPU to enter STOP mode.

The CPU can enter STOP mode due to repairable faults, such as the following:
® Failure of a replaceable signal module
e Temporary faults, such as power line disturbance or erratic power up event

Such conditions could result in property damage.

If you have configured the CPU to "Warm restart - mode prior to POWER OFF", the CPU
goes to the operating mode that the CPU was in prior to the loss of power or fault. If the
CPU was in STOP mode at the time of power loss or fault, the CPU goes to STOP mode
on power up. The CPU stays in STOP mode until the CPU receives a command to go to
RUN mode. If the CPU was in RUN mode at the time of power loss or fault, the CPU goes
to RUN mode on the next power up. The CPU goes to RUN mode providing the CPU
detects no errors that would inhibit a transition to RUN mode.

Configure CPUs that you intend to operate independently of a STEP 7 connection to
"Warm restart - RUN". This startup mode sets the CPU to return to RUN mode on the next
power cycle.

You can use the 'STOP" or "RUN" commands | (Page 1274) from the online tools of the
programming software to change the current operating mode. You can also include an STP

S7-1200 Programmable controller
84 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

instruction (Page 298) in your program to change the CPU to STOP mode. This instruction
allows you to stop the execution of your program based on the program logic.

® |In STOP mode, the CPU handles any communication requests (as appropriate) and
performs self-diagnostics.The CPU does not execute the user program. Automatic updates
of the process image do not occur.

® |In STARTUP and RUN modes, the CPU performs the tasks shown in the following figure:

STARTUP RUN
A Copies the state of the physical inputs (D Writes Q memory to the physical outputs
to | memory

B Initializes the Q output (image) memory @ Copies the state of the physical inputs to |
area with either zero, the last value, or memory
the configured substitute value. Zeroes
PB, PN, and AS-i outputs
C Initializes non-retentive M memory and ® Executes the program cycle OBs
data blocks to their initial value and en-
ables configured cyclic interrupt and
time of day events.

Executes the startup OBs.

D Stores any interrupt events into the @ Performs self-test diagnostics
queue to be processed after entering
RUN mode
E Enables the writing of Q memory to the ® Processes interrupts and communications
physical outputs during any part of the scan cycle
Note
Communication, including HMI communication, cannot interrupt OBs other than program
cycle OBs.
STARTUP processing

Whenever the operating mode changes from STOP to RUN, the CPU clears the process image
inputs, initializes the process image outputs and processes the startup OBs. Any read
accesses to the process-image inputs by instructions in the startup OBs read zero rather than
the current physical input value. Therefore, to read the current state of a physical input during
the startup mode, you must perform an immediate read. The startup OBs and any associated
FCs and FBs are executed next. If more than one startup OB exists, the CPU executes each
OB in order according to the OB number, executing the lowest OB number first.

Each startup OB includes startup information that helps you determine the validity of retentive
data and the time-of-day clock. You can program instructions inside the startup OBs to examine

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 85

PLC concepts

5.1 Execution of the user program

5.1.2

86

these startup values and to take appropriate action. The following startup locations are
supported by the Startup OBs:

Table 5-1 Startup locations supported by the startup OB

Input Data Type Description
LostRetentive | Bool This bit is true if the retentive data storage areas have been lost
LostRTC Bool This bit is true if the time-of-day clock (Real time Clock) has been lost

The CPU also performs the following tasks during the startup processing:
® |nterrupts are queued but not processed during the startup phase
® No cycle time monitoring is performed during the startup phase

® Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and
PtP (point-to-point communication) modules can be made in startup

® Actual operation of HSC, PWM and point-to-point communication modules only occurs in
RUN

After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes the
control tasks in a continuous scan cycle.

Processing the scan cycle in RUN mode

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user program,
updates communication modules, and responds to user interrupt events and communication
requests. Communication requests are handled periodically throughout the scan.

These actions (except for user interrupt events) are serviced regularly and in sequential order.
User interrupt events that are enabled are serviced according to priority in the order in which
they occur. For interrupt events, the CPU reads the inputs, executes the OB, and then writes
the outputs, using the associated process image partition (PIP), if applicable.

The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

e Each scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB, and
SM modules configured for automatic I/O update (default configuration). When a physical
output is accessed by an instruction, both the output process image and the physical output
itself are updated.

® The scan cycle continues by reading the current values of the digital and analog inputs from
the CPU, SB, and SMs configured for automatic I/O update (default configuration), and then
writing these values to the process image. When a physical input is accessed by an
instruction, the value of the physical input is accessed by the instruction, but the input
process image is not updated.

e After reading the inputs, the user program is executed from the first instruction through the
end instruction. This includes all the program cycle OBs plus all their associated FCs and
FBs. The program cycle OBs are executed in order according to the OB number with the
lowest OB number executing first.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

Communications processing occurs periodically throughout the scan, possibly interrupting
user program execution.

Self-diagnostic checks include periodic checks of the system and the I/O module status checks.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts the scan cycle and calls the OB that was configured to process that
event. After the OB finishes processing the event, the CPU resumes execution of the user
program at the point of interruption.

51.3 Organization blocks (OBs)

OBs control the execution of the user program. Specific events in the CPU trigger the execution
of an organization block. OBs cannot call each other. An FC or FB cannot call an OB. Only an
event such as a diagnostic interrupt or a time interval can start the execution of an OB. The CPU
handles OBs according to their respective priority classes, with higher priority OBs executing
before lower priority OBs. The lowest priority class is 1 (for the main program cycle), and the
highest priority class is 26.

5.1.31 Program cycle OB

Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of the
program is a program cycle OB. This is where you place the instructions that control your
program and where you call additional user blocks. You can have multiple program cycle OBs,
which the CPU executes in numerical order. Main (OB 1) is the default.

Program cycle events

The program cycle event happens once during each program cycle (or scan). During the
program cycle, the CPU writes the outputs, reads the inputs and executes program cycle OBs.
The program cycle event is required and is always enabled. You might have no program cycle
OBs, or you might have multiple OBs selected for the program cycle event. After the program
cycle event occurs, the CPU executes the lowest numbered program cycle OB (usually "Main"
OB 1). The CPU executes the other program cycle OBs sequentially (in numerical order) within
the program cycle. Program execution is cyclical such that the program cycle event occurs at
the following times:

® When the last startup OB finishes execution

e When the last program cycle OB finishes execution

Table 5-2 Start information for a program cycle OB

Input Data type Description
Initial_Call Bool True for initial call of the OB
Remanence Bool True if retentive data are available

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 87

PLC concepts

5.1 Execution of the user program

5.1.3.2

Startup events

5133

Startup OB

Startup OBs execute one time when the operating mode of the CPU changes from STOP to
RUN, including powering up in the RUN mode and in commanded STOP-to-RUN transitions.
After completion, the main "Program cycle" begins executing.

The startup event happens one time on a STOP to RUN transition and causes the CPU to
execute the startup OBs. You can configure multiple OBs for the startup event. The startup OBs
execute in numerical order.

Table 5-3 Start information for a startup OB

Input Data type Description
LostRetentive | Bool True if retentive data are lost
LostRTC Bool True if date and time are lost

Time delay interrupt OB

Time delay interrupt OBs execute after a time delay that you configure.

Time delay interrupt events

5.1.34

You configure time delay interrupt events to occur after a specified delay time has expired. You
assign the delay time with the SRT_DINT instruction. The time delay events interrupt the
program cycle to execute the corresponding time delay interrupt OB. You can attach only one
time delay interrupt OB to a time delay event. The CPU supports four time delay events.

Table 5-4 Start information for a time delay interrupt OB

Input Data type Description

Sign Word Identifier passed to triggering call of SRT_DINT

Cyclic interrupt OB

Cyclic interrupt OBs execute at a specified interval. You can configure up to a total of four cyclic
interrupt events, with one OB corresponding to each cyclic interrupt event.

Cyclic interrupt events

88

The cyclic interrupt events allow you to configure the execution of an interrupt OB at a

configured cycle time. You configure the initial cycle time when you create the cyclic interrupt
OB. A cyclic event interrupts the program cycle and executes the corresponding cyclic interrupt
OB. Note that the cyclic interrupt event is at a higher priority class than the program cycle event.

You can attach only one cyclic interrupt OB to a cyclic event.

You can assign a phase shift to each cyclic interrupt so that the execution of cyclic interrupts
can be offset from one another by the phase offset amount. For example, if you have a 5 ms

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

cyclic event and a 10 ms cyclic event, every ten milliseconds both events occur at the same
moment. If you phase shift the 5 ms event by 1 to 4 ms and the 10 ms event by 0 ms, then the
two events do not occur at the same moment.

The default phase offset is 0. To change the initial phase shift, or to change the cyclic time for
a cyclic event, follow these steps:

1. Right-click the cyclic interrupt OB in the project tree.
2. Select "Properties" from the context menu.

3. Click "Cyclic interrupt" from the "Cyclic interrupt [OB 30]" dialog, and enter the new initial
values.

The maximum phase offset is 6000 ms (6 seconds) or the maximum Cyclic time, whichever is
smaller.

You can also query and change the scan time and the phase shift from your program using the
Query cyclicinterrupt (QRY_CINT) and Set cyclic interrupt (SET_CINT) instructions. Scan time
and phase shift values set by the SET_CINT instruction do not persist through a power cycle or
atransition to STOP mode; scan time and phase shift values return to the initial values following
a power cycle or a transition to STOP. The CPU supports a total of four cyclic interrupt events.

5.1.3.56 Hardware interrupt OB

Hardware interrupt OBs execute when the relevant hardware event occurs. A hardware
interrupt OB interrupts normal cyclic program execution in reaction to a signal from a hardware
event.

Hardware interrupt events

Changes in the hardware, such as a rising or falling edge on an input point, or an HSC (High
Speed Counter) event trigger hardware interrupt events. The S7-1200 supports one interrupt
OB for each hardware interrupt event. You enable the hardware events in the device
configuration, and assign an OB for an event in the device configuration or with an ATTACH
instruction in the user program. The CPU supports several hardware interrupt events. The CPU
model and the number of input points determine the exact events that are available.

Limits on hardware interrupt events are as follows:
Edges:

® Rising edge events: maximum of 16

® Falling edge events: maximum of 16

HSC events:

e CV=PV: maximum of 6

® Direction changed: maximum of 6

e External reset: maximum of 6

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 89

PLC concepts

5.1 Execution of the user program

5.1.3.6

Table 5-5 Start information for a hardware interrupt OB
Input Data type Description
LADDR HW_IO Hardware identifier of the module that triggered the hardware interrupt
usl WORD User structure identifier (16#0001 to 16#FFFF), reserved for future
use
IChannel USINT Number of the channel that triggered the interrupt
EventType BYTE Identifier for the module-specific event type associated with the event

triggering the interrupt, for example falling edge or rising edge.

The bits in EventType depend

on the triggering module as shown below:

Module / Sub- | Value Process event

module

Onboard I/0 16#0 Rising edge

from 16#1 Falling edge

CPU or SB

HSC 16#0 HSC CV=RV1
16#1 HSC direction changed
16#2 HSC reset
16#3 HSC CV=RV2

Time error interrupt OB

If configured, the time error interrupt OB (OB 80) executes when either the scan cycle exceeds
the maximum cycle time or a time error event occurs. If triggered, it executes, interrupting
normal cyclic program execution or any other event OB.

The occurrence of either of these events generates a diagnostic buffer entry describing the
event. The diagnostic buffer entry is generated regardless of the existence of the time error

interrupt OB.

Time error interrupt events

90

The occurrence of any of several different time error conditions results in a time error event:

® Scan cycle exceeds maximum cycle time
The "maximum cycle time exceeded" condition results if the program cycle does not

complete within the specified maximum scan cycle time. See the section "Monitoring and
configuring the cycle time" (Page 101) for more information regarding the maximum cycle
time condition, how to configure the maximum scan cycle time in the properties of the CPU,
and how to reset the cycle timer.

CPU cannot start requested OB because a second time interrupt (cyclic or time-delay) starts
before the CPU finishes execution of the first interrupt OB

Queue overflow occurred

The "queue overflow occurred" condition results if the interrupts are occurring faster than
the CPU can process them. The CPU limits the number of pending (queued) events by
using a different queue for each event type. If an event occurs when the corresponding
queue is full, the CPU generates a time error event.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

All time error events trigger the execution of the time error interrupt OB if it exists. If the time
error interrupt OB does not exist, then the CPU changes to STOP mode.

The user program can extend the program cycle execution time up to ten times the configured
maximum cycle time by executing the RE_TRIGR instruction (Page 297) to restart the cycle
time monitor. However, if two "maximum cycle time exceeded" conditions occur within the
same program cycle without resetting the cycle timer, then the CPU transitions to STOP,
regardless of whether the time error interrupt OB exists. See the section on "Monitoring the
cycle time in the S7-1200 System Manual" (Page 101).

Time error interrupt OB includes start information that helps you determine which event and OB
generated the time error. You can program instructions inside the OB to examine these start
values and to take appropriate action.

Table 5-6 Start information for the time error OB (OB 80)

Input Data type Description

fault_id BYTE 16#01 - maximum cycle time exceeded

16#02 - requested OB cannot be started

16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error occurred
csg_prio UINT Priority of the OB causing the error

To include a time error interrupt OB in your project, you must add a time error interrupt by
double-clicking "Add new block" under "Program blocks" in the tree, then choose "Organization
block", and then "Time error interrupt".

The priority foranew V4.0 CPU is 22. If you exchange a V3.0 CPU for a V4.0 CPU (Page 1501),
the priority is 26, the priority that was in effect for V3.0. In either case, the priority field is editable
and you can set the priority to any value in the range 22 to 26.

5.1.3.7 Diagnostic error interrupt OB

The diagnostic error interrupt OB executes when the CPU detects a diagnostic error, or if a
diagnostics-capable module recognizes an error and you have enabled the diagnostic error
interrupt for the module. The diagnostic error interrupt OB interrupts the normal cyclic program
execution. You can include an STP instruction in the diagnostic error interrupt OB to put the
CPU in STOP mode if you desire your CPU to enter STOP mode upon receiving this type of
error.

If you do not include a diagnostic error interrupt OB in your program, the CPU ignores the error
and stays in RUN mode.

Diagnostic error events

Analog (local), PROFINET, PROFIBUS, and some digital (local) devices are capable of
detecting and reporting diagnostic errors. The occurrence or removal of any of several different
diagnostic error conditions results in a diagnostic error event. The following diagnostic errors
are supported:

e No user power

® High limit exceeded

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 91

PLC concepts

5.1 Execution of the user program

92

® | ow limit exceeded
o Wire break
® Short circuit

Diagnostic error events trigger the execution of the diagnostic error interrupt OB (OB 82) if it
exists. If it does not exist, then the CPU ignores the error.

To include a diagnostic error interrupt OB in your project, you must add a diagnostic error
interrupt by double-clicking "Add new block" under "Program blocks" in the tree, then choose
"Organization block", and then "Diagnostic error interrupt".

Note
Diagnostic errors for multi-channel local analog devices (I/O, RTD, and Thermocouple)

The diagnostic error interrupt OB can process only one channel's diagnostic error at a time.

If two channels of a multi-channel device have an error, then the second error only triggers the
diagnostic error interrupt OB under the following conditions: the first channel error clears, the
execution of the diagnostic error interrupt OB that the first error triggered is complete, and the
second error still exists.

The diagnostic error interrupt OB includes startup information that helps you determine
whether the event is due to the occurrence or removal of an error, and the device and channel
which reported the error. You can program instructions inside the diagnostic error interrupt OB
to examine these startup values and to take appropriate action.

Note

Diagnostic error OB Start information references the submodule as a whole if no diagnostic
event is pending

In V3.0, the start information for an outgoing diagnostic error event always indicated the source
of the event. In V4.0, if the outgoing event leaves the submodule with no pending diagnostics,
the start information references the submodule as a whole (16#8000) even if the source of the
event was a specific channel.

For example, if a wire break triggers a diagnostic error event on channel 2, the fault is then
corrected, and the diagnostic error event is cleared, the Start information will not reference
channel 2, but the submodule (16#8000).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

Table 5-7 Startup information for the diagnostic error interrupt OB

Input Data type Description

IOstate WORD 10 state of the device:

e Bit 0 =1 if the configuration is correct, and = 0 if the configuration
is no longer correct.

e Bit4 =1 if an error is present (such as a wire break). (Bit 4 = 0 if
there is no error.)

e Bit 5 = 1 if the configuration is not correct, and = 0 if the
configuration is correct again.

e Bit 7 =1ifan I/O access error has occurred. Refer to LADDR for
the hardware identifier of the 1/0 with the access error. (Bit 6 = 0 if
there is no error.)

LADDR HW_ANY Hardware identifier of the device or functional unit that reported the
error’

Channel UINT Channel number

MultiError BOOL TRUE if more than one error is present

' The LADDR input contains the hardware identifier of the device or functional unit which returned the
error. The hardware identifier is assigned automatically when components are inserted in the device
or network view and appears in the Constants tab of PLC tags. A name is also assigned automatically
for the hardware identifier. These entries in the Constants tab of the PLC tags cannot be changed.

5.1.3.8 Pull or plug of modules OB

The "Pull or plug of modules" OB executes when a configured and non-disabled distributed I/O
module or submodule (PROFIBUS, PROFINET, AS-i) generates an event related to inserting
or removing a module.

Pull or plug of modules event
The following conditions generate a pull of plug of modules event:
® Someone removes or inserts a configured module
® A configured module is not physically present in an expansion rack

® Anincompatible module is in an expansion rack that does not correspond to the configured
module

® A compatible module for a configured module is in an expansion rack, but the configuration
does not allow substitutes

® A module or submodule has parameterization errors

If you have not programmed this OB, the CPU remains in RUN mode when any of these
conditions occur with a configured and non-disabled distributed 1/0O module.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 93

PLC concepts

5.1 Execution of the user program

Regardless of whether you have programmed this OB, the CPU changes to STOP mode when
any of these conditions occur with a module in the central rack.

Table 5-8 Start information for pull or plug of modules OB

Input Data type Description
LADDR HW_IO Hardware identifier
Event_Class Byte 16#38: module inserted
16#29: module removed
Fault_ID Byte Fault identifier
5.1.3.9 Rack or station failure OB

The "Rack or station failure" OB executes when the CPU detects the failure or communication
loss of a distributed rack or station.

Rack or station failure event
The CPU generates a rack or station failure event when it detects one of the following:

® The failure of a DP master system or of a PROFINET IO system (in the case of either an
incoming or an outgoing event).

® The failure of a DP slave or of an 10 device (in the case of either an incoming or an outgoing
event)

® Failure of some of the submodules of a PROFINET I-device

If you have not programmed this OB, the CPU remains in RUN mode when any of these
conditions occur.

Table 5-9 Start information for rack or station failure OB

Input Data type Description

LADDR HW_IO Hardware identifier

Event_Class Byte 16#38: outgoing event
16#39: incoming event

Fault_ID Byte Fault identifier

5.1.3.10 Time of day OB

Time of day OBs execute based on configured clock time conditions. The CPU supports two
time of day OBs.

S7-1200 Programmable controller
94 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

Time of day events

5.1.3.11

Status events

5.1.3.12

You can configure a time of day interrupt event to occur once on a specified date or time or
cyclically with one of the following cycles:

e Every minute: The interrupt occurs every minute.
® Hourly: The interrupt occurs every hour.
e Daily: The interrupt occurs every day at a specified time (hour and minute).

e Weekly: The interrupt occurs every week at a specified time on a specified day of the week
(for example, every Tuesday at 4:30 in the afternoon).

e Monthly: The interrupt occurs every month at a specified time on a specified day of the
month. The day number must be between 1 and 28, inclusive.

® Every end of month: The interrupt occurs on the last day of every month at a specified time.

® Yearly: The interrupt occurs every year on the specified date (month and day). You cannot
specify a date of February 29.

Table 5-10 Start information for a time of day event OB

Input Data type Description

CaughtUp Bool OB call is caught up because time was set forward

SecondTimes | Bool OB call is started a second time because time was set backward

Status OB

Status OBs execute if a DPV1 or PNIO slave triggers a status interrupt. This might be the case
if a component (module or rack) of a DPV1 or PNIO slave changes its operating mode, for
example from RUN to STOP.

For detailed information on events that trigger a status interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 5-11 Start information for status OB
Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier
Update OB

Update OBs execute if a DPV1 or PNIO slave triggers an update interrupt.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 95

PLC concepts

5.1 Execution of the user program

Update events

For detailed information on events that trigger an update interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 5-12 Start information for update OB

Input Data type Description

LADDR HW_IO Hardware identifier

Slot Ulnt Slot number

Specifier Word Alarm specifier
5.1.3.13 Profile OB

Profile OBs execute if a DPV1 or PNIO slave triggers a profile-specific interrupt.

Profile events

For detailed information on events that trigger a profile interrupt, refer to the manufacturer's
documentation for the DPV1 or PNIO slave.

Table 5-13 Start information for profile OB
Input Data type Description
LADDR HW_IO Hardware identifier
Slot Ulnt Slot number
Specifier Word Alarm specifier

5.1.3.14 MC-Servo and MC-Interpolator OB

STEP 7 creates the read-only MC-Servo and MC-Interpolator OBs automatically when you
create a motion technology object and set the drive interface to be "Analog drive connection”
or "PROFIDrive". You do not need to edit any OB properties or create this OB directly. The CPU
uses these OBs for closed loop control. Refer to the STEP 7 Information System for further
details.

MC-PreServo

You can program the MC-PreServo OB to contain program logic for the STEP 7 program to
execute directly before the MC-Servo OB executes.

5.1.3.15

S7-1200 Programmable controller
96 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

MC-PreServo events

The MC-PreServo OB allows you to read out the configured application cycle information in
microseconds.

Table 5-14 Start information for MC-PreServo OB

Input Data type Description
Initial_Call BOOL TRUE indicates first call of this OB on transition from STOP to RUN
PIP_Input BOOL TRUE indicates the associated process image input is up to date.
PIP_Output BOOL TRUE indicates that the CPU transferred the associated process im-
age output to the outpus in good time after the last cycle.
10_System USINT Number of the distributed I/O system triggering the interrupt
Event_Count INT n: number of lost cycles
-1: unknown number of cycles lost (for example, because cycle has
changed)
Synchronous | BOOL Reserved
CycleTime UDINT Display of the application cycle configured for the MC-Servo OB in

microseconds

5.1.3.16 MC-PostServo

You can program the MC-PreServo OB to contain program logic for the STEP 7 program to
execute directly after the MC-Servo OB executes.

MC-PostServo events

The MC-PreServo OB allows you to read out the configured application cycle information in
microseconds.

Table 5-15 Start information for MC-PostServo OB

Input Data type Description
Initial_Call BOOL TRUE indicates first call of this OB on transition from STOP to RUN
PIP_Input BOOL TRUE indicates the associated process image input is up to date.
PIP_Output BOOL TRUE indicates that the CPU transferred the associated process im-
age output to the outpus in good time after the last cycle.
10_System USINT Number of the distributed 1/O system triggering the interrupt
Event_Count INT n: number of lost cycles
-1: unknown number of cycles lost (for example, because cycle has
changed)
Synchronous | BOOL Reserved
CycleTime UDINT Display of the application cycle configured for the MC-Servo OB in

microseconds

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 97

PLC concepts

5.1 Execution of the user program

5.1.3.17

Event execution priorities and queuing

The CPU processing is controlled by events. An event triggers an interrupt OB to be executed.
You can specify the interrupt OB for an event during the creation of the block, during the device
configuration, or with an ATTACH or DETACH instruction. Some events happen on a regular
basis like the program cycle or cyclic events. Other events happen only a single time, like the
startup event and time delay events. Some events happen when the hardware triggers an
event, such as an edge event on an input point or a high speed counter event. Events like the
diagnostic error and time error event only happen when an error occurs. The event priorities
and queues are used to determine the processing order for the event interrupt OBs.

The CPU processes events in order of priority where 1 is the lowest priority and 26 is the highest
priority. Prior to V4.0 of the S7-1200 CPU, each type of OB belonged to a fixed priority class (1
to 26). From V4.0 forward, you can assign a priority class to each OB that you configure. You
configure the priority number in the attributes of the OB properties.

Interruptible and non-interruptible execution modes

98

OBs (Page 87) execute in priority order of the events that trigger them. In the Startup properties
of the device configuration of the CPU (Page 157), you can configure OB execution to be
interruptible or non-interruptible. Note that program cycle OBs are always interruptible, but you
can configure all other OBs to be either interruptible or non-interruptible.

If you set interruptible mode, then if an OB is executing and a higher priority event occurs before
the OB completes its execution, the running OB is interrupted to allow the higher-priority event
OB to run. The higher-priority event runs, and at its completion, the OB that was interrupted
continues. When multiple events occur while an interruptible OB is executing, the CPU
processes those events in priority order.

If you do not set interruptible mode, then an OB runs to completion when triggered regardless
of any other events that trigger during the time that it is running.

Consider the following two cases where interrupt events trigger a cyclic OB and a time delay
OB. In both cases, the time delay OB (OB 201) has no process image partition assignment
(Page 79) and executes at priority 4. The cyclic OB (OB 200) has a process image partition
assignment of PIP1 and executes at priority 2. The following illustrations show the difference in
execution between non-interruptible and interruptible execution modes:

execute OB201

read PIP1 execute OB200 write PIP1
write PIPO read PIPO execute OB1 execute OB1 (continued)
Time |:|'> cyclic interval delay timer
elapsed expired

Figure 5-1 Case 1: Non-interruptible OB execution

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

execute OB201

read PIP1 execute OB200 execute OB200 (continued) write PIP1
write PIPO read PIPO execute OB1 execute OB1 (continued)
Time |:'|> cyclic interval delay timer
elapsed expired

Figure 5-2 Case 2: Interruptible OB execution

Note

If you configure the OB execution mode to be non-interruptible, then a time error OB cannot
interrupt OBs other than program cycle OBs. Prior to V4.0 of the S7-1200 CPU, a time error OB
could interrupt any executing OB. From V4.0 forward, you must configure OB execution to be
interruptible if you want a time error OB (or any other higher priority OB) to be able to interrupt
executing OBs that are not program cycle OBs.

Understanding event execution priorities and queuing

The CPU limits the number of pending (queued) events from a single source, using a different
queue for each event type. Upon reaching the limit of pending events for a given event type, the
next event is lost. You can use a time error interrupt OB (Page 90) to respond to queue

overflows.
Note that STEP 7 ‘G Properties {"5 Info . b hiagm)atirs |
allows you to con- General
figure some specif- ceneni Priority number: |3 |
ic event queueing 'T"*'"'“'C" g
ime stamps vent queueing
para_m(_eters forthe . s
CyC“C |nterru pt OB Frotection Ewvents to be queusd | 1
and the Time of day Antributes | [Repart event overllow into diagnestic buffer
OB. Helcimimnips i & Enable time error

- Event threshold for ime eror | 1 =|

For further information on CPU overload behavior and event queueing, refer to the STEP 7
Information System.

Each CPU event has an associated priority. In general, the CPU services events in order of
priority (highest priority first). The CPU services events of the same priority on a "first-come,
first-served" basis.

Table 5-16 OB events

Event Quantity allowed Default OB priority
Program cycle 1 program cycle event 11

Multiple OBs allowed
Startup 1 startup event ' 11
Multiple OBs allowed

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 99

PLC concepts

5.1 Execution of the user program

Event Quantity allowed Default OB priority
Time delay Up to 4 time events OB 20: 3
1 OB per event OB21:4
OB 22:5
OB 23: 6
OB 123 to OB 32767: 3
Cyclic interrupt Up to 4 events OB 30: 8
1 OB per event OB 31:9
OB 32: 10
OB 33: 11
OB 34: 12
OB 35: 13
OB 36: 14
OB 37: 16
OB 38: 17
OB 123 to OB 32767:7
Hardware interrupt Up to 50 hardware interrupt events? 18
1 OB per event, but you can use the same OB for 18
multiple events
Time error 1 event (only if configured)? 22 or 26*
Diagnostic error 1 event (only if configured) 5
Pull or plug of modules | 1 event 6
Rack or station failure 1 event 6
Time of day Up to 2 events 2
Status 1 event 4
Update 1 event 4
Profile 1 event 4
MC-Servo 1 event 25
MC-Interpolator 1 event 24

' The startup event and the program cycle event never occur at the same time because the startup
event runs to completion before the program cycle event starts.

instructions.

You can have more than 50 hardware interrupt event OBs if you use the DETACH and ATTACH

3 You can configure the CPU to stay in RUN if the scan cycle exceeds the maximum scan cycle time or
you can use the RE_TRIGR instruction to reset the cycle time. However, the CPU goes to STOP mode
the second time that one scan cycle exceeds the maximum scan cycle time.

4 The priority for a new V4.0 or V4.1 CPU is 22. If you exchange a V3.0 CPU for a V4.0 or V4.1 CPU,
the priority is 26: the priority that was in effect for V3.0. In either case, the priority field is editable and
you can set the priority to any value in the range 22 to 26.

Refer to the topic "Exchanging a V3.0 CPU for a V4.x CPU (Page 1501)" for more details.

S7-1200 Programmable controller
100 System Manual, V4.4 11/2019, ASE02486680-AN

PLC concepfts

5.1 Execution of the user program

In addition, the CPU recognizes other events that do not have associated OBs. The following
table describes these events and the corresponding CPU actions:

Table 5-17 Additional events

Event

Description

CPU action

1/0 access error

Direct 1/O read/write error

The CPU logs the first occurrence in the di-
agnostic buffer and stays in RUN mode. You
can access the error cause using

the GET_ERROR_ID (Page 299) instruction.

Max cycle time error

CPU exceeds the configured
cycle time twice

The CPU logs the error in the diagnostic buf-
fer and transitions to STOP mode.

Peripheral access error

I/O error during process im-
age update

The CPU logs the first occurrence in the di-
agnostic buffer and stays in RUN mode.

Programming error

program execution error

® |f block-local error handling is enabled,
the system enters an error cause in the
error structure. You can access the error
cause using the GET_ERROR_ID
(Page 299) instruction.

e |f global error handling is enabled, the
system enters an access error start
event into the diagnostic buffer and
stays in RUN mode.

Interrupt latency

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is

approximately 175 psec, provided that a program cycle OB is the only event service routine
active at the time of the interrupt event.

514 Monitoring and configuring the cycle time

The cycle time is the time that the CPU operating system requires to execute the cyclic phase
of the RUN mode. The CPU provides two methods of monitoring the cycle time:

® Maximum scan cycle time

® Minimum scan cycle time

Scan cycle monitoring begins after the startup event is complete. Configuration for this feature
appears under the "Device Configuration" for the CPU under "Cycle time".

The CPU monitors the scan cycle and reacts if the scan cycle time exceeds the configured
maximum scan cycle time. The CPU generates an error and responds as follows if the scan
cycle time exceeds the configured maximum scan cycle time:

e |f the user program includes a time error interrupt OB (Page 90), then the CPU executes it.

e |[f the user program does not include a time error interrupt OB, then the time error event
generates a diagnostic buffer entry. The CPU goes to STOP mode.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

101

PLC concepts

5.1 Execution of the user program

The RE_TRIGR instruction (Page 297) (re-trigger cycle time monitoring) allows you to reset the
timer that measures the cycle time. If the elapsed time for the current program cycle execution
is less than ten times the configured maximum scan cycle time, the RE_TRIGR instruction
retriggers the cycle time monitoring and returns with ENO = TRUE. If not, the RE_TRIGR
instruction does not retrigger the cycle time monitoring. It returns ENO = FALSE.

Typically, the scan cycle executes as fast as it can be executed and the next scan cycle begins
as soon as the current one completes. Depending upon the user program and communication
tasks, the time period for a scan cycle can vary from scan to scan. To eliminate this variation,
the CPU supports an optional minimum scan cycle time. If you enable this optional feature and
provide a minimum scan cycle time in ms, then the CPU delays after the execution of the
program cycle OBs until the minimum scan cycle time elapses before repeating the program
cycle.

In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing runtime
diagnostics and/or processing communication requests.

In the event that the CPU does not complete the scan cycle in the specified minimum cycle time,
the CPU completes the scan normally (including communication processing) and does not
create any system reaction as a result of exceeding the minimum scan time. The following table
defines the ranges and defaults for the cycle time monitoring functions:

Table 5-18 Range for the cycle time

Cycle time Range (ms) Default
Maximum scan cycle time’ 1 to 6000 150 ms
Minimum scan cycle time? 1 to maximum scan cycle time Disabled

' The maximum scan cycle time is always enabled. Configure a cycle time between 1 ms to 6000 ms.
The default is 150 ms.

The minimum scan cycle time is optional, and is disabled by default. If required, configure a cycle time
between 1 ms and the maximum scan cycle time.

2

Configuring the cycle time and communication load
You use the CPU properties in the Device configuration to configure the following parameters:

® (Cycle: You can enter a maximum scan cycle monitoring time. You can also enable and enter
a minimum scan cycle time.
Cycle

Scan cycle monitoring time: | 150 ms
[] Enable minimum cycle time for cyclic OBs

mis

e Communication load: You can configure a percentage of the time to be dedicated for
communication tasks.

Communication load

Cycle load due to communication: 20 %

S7-1200 Programmable controller
102 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

Note
Communication priority

Communication tasks have a priority of 1. Because 1 is the lowest priority, other CPU events
can interrupt communication processing. Interruptions from other events can negatively affect
communication processing during the scan cycle. You can adjust the "Cycle load due to
communication" percentage to increase the portion of the scan cycle dedicated to
communication processing.

For more information about the scan cycle, see "Monitoring the cycle time". (Page 101)

5.1.5 CPU memory

Memory management

The CPU provides the following memory areas to store the user program, data, and
configuration:

® | oad memory is non-volatile storage for the user program, data and configuration. When
you download a project to the CPU, the CPU first stores the program in the Load memory
area. This area is located either in a memory card (if present) or in the CPU. The CPU
maintains this non-volatile memory area through a power loss. The memory card supports
a larger storage space than that built-in to the CPU.

e Work memory is volatile storage for some elements of the user project while executing the
user program. The CPU copies some elements of the project from load memory into work
memory. This volatile area is lost when power is removed, and is restored by the CPU when
power is restored.

® Retentive memory is non-volatile storage for a limited quantity of work memory values. The
CPU uses the retentive memory area to store the values of selected user memory locations
during power loss. When a power down or power loss occurs, the CPU restores these
retentive values upon power up.

To display the memory usage for a compiled program block, right-click the block in the
"Program blocks" folder in the STEP 7 project tree and select "Resources" from the context
menu. The Compiliation properties display the load memory and work memory for the compiled
block.

To display the memory usage for the online CPU, double-click "Online and diagnostics" in
STEP 7, expand "Diagnostics", and select "Memory".

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 103

PLC concepts

5.1 Execution of the user program

Retentive memory

You can avoid data loss after power failure by marking certain data as retentive. The CPU
allows you to configure the following data as retentive:

® Bit memory (M): You can define the size of retentive memory for bit memory in the PLC tag
table or in the assignment list. Retentive bit memory always starts at MBO and runs
consecutively up through a specified number of bytes. Specify this value from the PLC tag
table or in the assignment list by clicking the "Retain" toolbar icon. Enter the number of M
bytes to retain starting at MBO.
Note: For any block, you can display the assignment list by selecting a block in the Program
Blocks folder and then selecting he Tools > Assignment list menu command.

® Tags of a function block (FB): If an FB is of type "Optimized block access", then the interface
editor for this FB includes a "Retain" column. In this column, you can select either "Retain",
"Non-retain", or "Set in IDB" individually for each tag. When you place such an FB in the
program, the instance DB that corresponds to the FB includes this "Retain" column as well.
You can only change the retentive state of a tag from within the instance DB interface editor
if you selected "Set in IDB" (Set in instance data block) in the Retain selection for the tag in
the optimized FB.
If an FB is not of type "Optimized block access", then the interface editor for this FB does not
include a "Retain" column. When you place such an FB in the program, the instance DB that
corresponds to the FB does, however, include a "Retain" column that is available for edit. In
this case, selecting the "Retain" option for any tag results in the selection of all tags.
Similarly, deselecting the option for any tag results in the deselection of all tags.
To view or modify whether an FB is optimized, open the properties of the FB and select the
attributes.

® Tags of a global data block: The behavior of a global DB with regard to retentive state
assignment is similar to that of an FB. Depending on the block access setting you can define
the retentive state either for individual tags or for all tags of a global data block.

— Ifyou select "Optimized" when you create the DB, you can set the retentive state for each
individual tag.

— If you select "Standard - compatible with S7-300/400" when you create the DB, the
retentive-state setting applies to all tags of the DB; either all tags are retentive or no tag
is retentive.

The CPU supports a total of 10240 bytes of retentive data. To see how much is available, from
the PLC tag table or the assignment list, click the "Retain" toolbar icon. Although this is where
the retentive range is specified for M memory, the second row indicates the total remaining
memory available for M and DB combined. Note that for this value to be accurate, you must
compile all data blocks with retentive tags.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

S7-1200 Programmable controller
104 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.1 Execution of the user program

5.1.5.1 System and clock memory

You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions by their tag names.

® You can assign one byte in M memory for system memory. The byte of system memory
provides the following four bits that can be referenced by your user program by the following
tag names:

— Firstcycle: (Tag name "FirstScan") bit is set to1 for the duration of the first scan after the
startup OB finishes. (After the execution of the first scan, the "first scan” bit is set to 0.)

— Diagnostics status changed: (Tag name: "DiagStatusUpdate") is set to 1 for one scan
after the CPU logs a diagnostic event. Because the CPU does not set the
"DiagStatusUpdate" bit until the end of the first execution of the program cycle OBs, your
user program cannot detect if there has been a diagnostic change either during the
execution of the startup OBs or the first execution of the program cycle OBs.

— Always 1 (high): (Tag name "AlwaysTRUE") bit is always set to 1.
— Always 0 (low): (Tag name "AlwaysFALSE") bit is always set to 0.

® You can assign one byte in M memory for clock memory. Each bit of the byte configured as
clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user program
on a cyclic basis.

The CPU initializes these bytes on the transition from STOP mode to STARTUP mode. The bits

of the clock memory change synchronously to the CPU clock throughout the STARTUP and
RUN modes.

A\ cauTioN

Risks with overwriting the system memory or clock memory bits

Overwriting the system memory or clock memory bits can corrupt the data in these functions
and cause your user program to operate incorrectly, which can cause damage to equipment
and injury to personnel.

Because both the clock memory and system memory are unreserved in M memory,
instructions or communications can write to these locations and corrupt the data.

Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

System memory configures a byte with bits that turn on (value = 1) for a specific event.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 105

PLC concepts

5.1 Execution of the user program

System memory bits

[W] Enable the use of system memory byte

Address of system memary

byte (MEx): |1 |
First cycle |%I-.I'I .0 (FirstScan) |
Dlagnaostics status changed |%I-.I'I 1 (DiagStatusUpdate) |
Alweays 1 (highy |%I-.I'I 2 (AlwaysTRUE) |
Slways 0 (lowd [3M1.3 (AlwaysFALSE) |

Table 5-19 System memory

7 |6 |5 |4 |[3 2 1 0
Reserved Always off | Always on | Diagnostic status indica- | First scan indicator
Value 0 Value 0 Value 1 tor ® 1: First scan after
e 1:Change startup
® (: No change ® (: Not first scan

Clock memory configures a byte that cycles the individual bits on and off at fixed intervals. Each
clock bit generates a square wave pulse on the corresponding M memory bit. These bits can
be used as control bits, especially when combined with edge instructions, to trigger actions in
the user code on a cyclic basis.

Clock memory bits

ggEnable the use of clock memary byte

Address of clock memary byte

0525 Hz clac

[26M 0.6 (Clock_0.625Hz)

Mg |0 |
10 Hz elack: [36M0 0 (Clock_10Hz) |
5 Hzclack: [%M0 1 (Clack_5Hz) |
25 Heclock: [28M0.2 (Clock_2 5Hz) |
2 Hzelack: [%M0 3 (Clack_2Hz) |
| 25 Hz elack: [36M0 4 (Clock_1.25Hz) |
| Hz clack [%6M0 5 (Clack_1Hz) |
|
|

0.5 Hz clock |%I-.IIII..T (Clock_0.5Hz)

Table 5-20 Clock memory

Bit number 7 6 5 4 3 2 1 0
Tag name

Period (s) 2.0 1.6 1.0 0.8 0.5 0.4 0.2 0.1
Frequency (Hz) 0.5 0.625 |1 1.25 2 25 5 10

Because clock memory runs asynchronously to the CPU cycle, the status of the clock memory can change
several times during a long cycle.

S7-1200 Programmable controller
106 System Manual, V4.4 11/2019, ASE02486680-AN

PLC concepfts

5.1 Execution of the user program

5.1.6 Diagnostics buffer

The CPU supports a diagnostics buffer that contains an entry for each diagnostic event. Each
entry includes a date and time the event occurred, an event category, and an event description.
The entries are displayed in chronological order with the most recent event at the top. Up to 50
most recent events are available in this log. When the log is full, a new event replaces the oldest
event in the log. When power is lost, the events are saved.

The following types of events are recorded in the diagnostics buffer:
® Each system diagnostic event; for example, CPU errors and module errors

® Each state change of the CPU (each power up, each transition to STOP, each transition to
RUN)

To access the diagnostics buffer (Page 1275), you must be online. From the "Online &
diagnostics" view, locate the diagnostics buffer under "Diagnostics > Diagnostics buffer".

Reducing the number of security diagnostic events

Some security events generate repeated entries in the diagnostics buffer. These messages
can fill up the diagnostics buffer and potentially obscure other event messages. You can
configure the PLC to limit the number of diagnostic messages from security events. You make
selections in the device configuration of the CPU based on the time interval in which you want
to suppress recurring messages:

G Properties i;_i..-lnfu | EL- Diagnostics

General | I0tags | Systemconstants | Texts
User interface languages - Security event
Time ofday
* Pratection S a
1 [Summarize security events in case of high
Connection mechenisms message volume
s Ll = Length of an interval: |20

Configuration control 2
- | seconds -
Lonnecnion resources - |

If you choose to summarize security events within a time interval, you have the choice of setting
a time interval in seconds, minutes, or hours, and a numerical value in the range 1 .. 255.

If you choose to restrict security events, you will be restricting these types of events:
® Going online with the correct or incorrect password

® Manipulated communications data detected

e Manipulated data detected on memory card

e Manipulated firmware update file detected

e (Changed protection level (access protection) downloaded to the CPU

e Password legitimization restricted or enabled (by instruction or CPU display)

® Online access denied due to the possible number of simultaneous access attempts being
exceeded

e Timeout when an existing online connection is inactive

® | ogging in to the Web server with the correct or incorrect password

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 107

PLC concepts

5.1 Execution of the user program

51.7

5.1.8

108

® Creating a backup of the CPU

e Restoring the CPU configuration

Time of day clock

The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to keep
the clock running during times when the CPU is powered down. The super-capacitor charges
while the CPU has power. After the CPU has been powered up at least 24 hours, then the super-
capacitor has sufficient charge to keep the clock running for typically 20 days.

STEP 7 sets the time-of-day clock to system time, which has a default value out of the box or
following a factory reset. To utilize the time-of-day clock, you must set it. Timestamps such as
those for diagnostic buffer entries, data log files, and data log entries are based on the system
time. You set the time of day from the 'Set time of day" function (Page 1271) in the "Online &
diagnostics" view of the online CPU. STEP 7 then calculates the system time from the time you
set plus or minus the Windows operating system offset from UTC (Coordinated Universal
Time). Setting the time of day to the current local time produces a system time of UTC if your
Windows operating system settings for time zone and daylight savings time correspond to your
locale.

STEP 7 includes instructions (Page 322) to read and write the system time (RD_SYS_T and
WR_SYS_T), to read the local time (RD_LOC_T), and to set the time zone (SET_TIMEZONE).
The RD_LOC_T instruction calculates local time using the time zone and daylight saving time
offsets that you set in the "Time of day" configuration in the general properties of the CPU
(Page 157). These settings enable you to set your time zone for local time, optionally enable
daylight saving time, and specify the start and end dates and times for daylight saving time. You
can also use the SET_TIMEZONE instructions to configure these settings.

Configuring the outputs on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs when the CPU is in STOP
mode. For any output of a CPU, SB or SM, you can set the outputs to either freeze the value
or use a substitute value:

® Substituting a specified output value (default): You enter a substitute value for each output
(channel) of that CPU, SB, or SM device.
The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

® Freezing the outputs to remain in last state: The outputs retain their current value at the time
of the transition from RUN to STOP. After power up, the outputs are set to the default
substitute value.

You configure the behavior of the outputs in Device Configuration. Select the individual devices
and use the "Properties" tab to configure the outputs for each device.

Note

Some distibuted I/O modules offer additional settings for the reaction to CPU stop mode. Select
from the list of choices in Device Configuration for those modules.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.2 Data storage, memory areas, I/O and addressing

When the CPU changes from RUN to STOP, the CPU retains the process image and writes the
appropriate values for both the digital and analog outputs, based upon the configuration.

5.2 Data storage, memory areas, 1/0 and addressing

5.21 Accessing the data of the S7-1200

STEP 7 facilitates symbolic programming. You create symbolic names or "tags" for the
addresses of the data, whether as PLC tags relating to memory addresses and 1/O points or as
local variables used within a code block. To use these tags in your user program, simply enter
the tag name for the instruction parameter.

For a better understanding of how the CPU structures and addresses the memory areas, the
following paragraphs explain the "absolute" addressing that is referenced by the PLC tags. The
CPU provides several options for storing data during the execution of the user program:

® Global memory: The CPU provides a variety of specialized memory areas, including inputs
(), outputs (Q) and bit memory (M). This memory is accessible by all code blocks without
restriction.

e PLC tag table: You can enter symbolic names in the STEP 7 PLC tag table for specific
memory locations. These tags are global to the STEP 7 program and allow programming
with names that are meaningful for your application.

e Datablock (DB): You caninclude DBs in your user program to store data for the code blocks.
The data stored persists when the execution of the associated code block comes to an end.
A "global" DB stores data that can be used by all code blocks, while an instance DB stores
data for a specific FB and is structured by the parameters for the FB.

e Temp memory: Whenever a code block is called, the operating system of the CPU allocates
the temporary, or local, memory (L) to be used during the execution of the block. When the
execution of the code block finishes, the CPU reallocates the local memory for the execution
of other code blocks.

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. References to the input (1) or
output (Q) memory areas, such as 10.3 or Q1.7, access the process image. To immediately
access the physical input or output, append the reference with ":P" (such as 10.3:P, Q1.7:P, or
"Stop:P").

Table 5-21 Memory areas

Memory area Description Force Retentive
| Copied from physical inputs at the beginning of No No
Process image input the scan cycle

P’ Immediate read of the physical input points on Yes No
(Physical input) the CPU, SB, and SM

Q Copied to physical outputs at the beginning of No No
Process image output the scan cycle

QP! Immediate write to the physical output points on Yes No
(Physical output) the CPU, SB, and SM

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 109

PLC concepts

5.2 Data storage, memory areas, I/O and addressing

Memory area Description Force Retentive
M Control and data memory No Yes
Bit memory (optional)
L Temporary data for a block local to that block No No
Temp memory

DB Data memory and also parameter memory for No Yes
Data block FBs (optional)

' To immediately access (read or write) the physical inputs and physical outputs, append a ":P" to the

address or tag (such as 10.3:P, Q1.7:P, or "Stop:P").

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location. The absolute address consists of
the following elements:

® Memory area identifier (such as I, Q, or M)

® Size of the data to be accessed ("B' for Byte, "W" for Word, or "D" for DWord)

e Starting address of the data (such as byte 3 or word 3)

When accessing a bit in the address for a Boolean value, you do not enter a mnemonic for the
size. You enter only the memory area, the byte location, and the bit location for the data (such

as 10.0, Q0.1, or M3.4).
M3 .4
® ©0®
0
1
2
3®
4
5
7 6 5 4 3 2 10
®
A Memory area identifier E
B Byte address: byte 3 F
C Separator ("byte.bit")
D Bit location of the byte (bit 4 of 8)

Bytes of the memory area

Bits of the selected byte

In the example, the memory area and byte address (M = bit memory area, and 3 = Byte 3) are
followed by a period (".") to separate the bit address (bit 4).

110

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.2 Data storage, memory areas, I/O and addressing

Accessing the data in the memory areas of the CPU

STEP 7 facilitates symbolic programming. Typically, you create tags either in the PLC tag table,
a data block, or in the interface of an OB, FC, or FB. These tags include a name, data type,
offset, and comment. Additionally, in a data block, you can specify a start value. You can use
these tags when programming by entering the tag name at the instruction parameter.
Optionally you can enter the absolute operand (memory area, size and offset) at the instruction
parameter. The examples in the following sections show how to enter absolute operands. The
% character is inserted automatically in front of the absolute operand by the program editor.
You can toggle the view in the program editor to one of these: symbolic, symbolic and absolute,
or absolute.

I (process image input): The CPU samples the peripheral (physical) input points just prior to the
cyclic OB execution of each scan cycle and writes these values to the input process image. You
can access the input process image as bits, bytes, words, or double words. Both read and write
access is permitted, but typically, process image inputs are only read.

Table 5-22 Absolute addressing for | memory

Bit I[byte address].[bit address] 10.1
Byte, Word, or Double Word I[size][starting byte address] IB4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs of
the CPU, SB, SM or distributed module. The difference between an access using I_:P instead
of | is that the data comes directly from the points being accessed rather than from the input

process image. This |_:P access is referred to as an "immediate read" access because the data
is retrieved immediately from the source instead of from a copy that was made the last time the
input process image was updated.

Because the physical input points receive their values directly from the field devices connected
to these points, writing to these points is prohibited. That is, |_:P accesses are read-only, as
opposed to | accesses which can be read or write.

I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to startat 14.0, then the input points can be accessed as 14.0:P and 14.1:P or as IB4:P. Accesses
to 14.2:P through 14.7:P are not rejected, but make no sense since these points are not used.
Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset associated with
the SB.

Accesses using |_:P do not affect the corresponding value stored in the input process image.

Table 5-23 Absolute addressing for | memory (immediate)

Bit I[byte address].[bit address]:P 10.1:P
Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to the
physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Table 5-24 Absolute addressing for Q memory

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 111

PLC concepts

5.2 Data storage, memory areas, I/O and addressing

112

By appending a ":P" to the address, you can immediately write to the physical digital and analog
outputs of the CPU, SB, SM or distributed module. The difference between an access using

Q_:P instead of Q is that the data goes directly to the points being accessed in addition to the
output process image (writes to both places). This Q_:P access is sometimes referred to as an
"immediate write" access because the data is sent immediately to the target point; the target
point does not have to wait for the next update from the output process image.

Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.

Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the outputs of a 2 DI / 2 DQ SB are configured
to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or as QB4:P.
Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since these points are
not used. Accesses to QW4:P and QD4:P are prohibited since they exceed the byte offset
associated with the SB.

Accesses using Q_:P affect both the physical output as well as the corresponding value stored
in the output process image.

Table 5-25 Absolute addressing for Q memory (immediate)

Bit Q[byte address].[bit address]:P Q1.1:P

Byte, Word, or Double word Q[size][starting byte address]:P QB5:P, QW10:P or QD40:P

M (bit memory area): Use the bit memory area (M memory) for both control relays and data to
store the intermediate status of an operation or other control information. You can access the
bit memory area in bits, bytes, words, or double words. Both read and write access is permitted
for M memory.

Table 5-26 Absolute addressing for M memory

Bit M[byte address].[bit address] M26.7
Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU allocates the temp memory on an as-needed basis. The
CPU allocates the temp memory for the code block and initializes the memory locations to 0 at
the time when it starts the code block (for an OB) or calls the code block (for an FC or FB).

Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:

e M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data is
available globally for all of the elements of the user program.

® Temp memory: The CPU restricts access to the data in temp memory to the OB, FC, or FB
that created or declared the temp memory location. Temp memory locations remain local
and different code blocks do not share temp memory, even when the code block calls
another code block. For example: When an OB calls an FC, the FC cannot access the temp
memory of the OB that called it.

The CPU provides temp (local) memory for each OB priority level:
® 16 Kbytes for startup and program cycle, including associated FBs and FCs

e 6 Kbytes for each additional interrupt event thread, including associated FBs and FCs

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.2 Data storage, memory areas, I/O and addressing

You access temp memory by symbolic addressing only.

You can find out the amount of temp (local) memory that the blocks in your program use through
the call structure in STEP 7. From the project tree select Program info and then select the Call
structure tab. You will see all of the OBs in your program and you can drill down to see the
blocks that they call. For each block, you can see the local data allocation. You can also access
the Call structure display from the STEP 7 Tools > Call structure menu command.

DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can access data block memory
in bits, bytes, words, or double words. Both read and write access is permitted for read/write
data blocks. Only read access is permitted for read-only data blocks.

Table 5-27 Absolute addressing for DB memory

Bit DBJ[data block number].DBX[byte address]. | DB1.DBX2.3
[bit address]
Byte, Word, or Double DB[data block number].DB [size][starting DB1.DBB4, DB10.DBW?2,
Word byte address] DB20.DBD8
Note

When you specify an absolute address in LAD or FBD, STEP 7 precedes this address with a
"%" character to indicate that it is an absolute address. While programming, you can enter an
absolute address either with or without the "%" character (for example %10.0 or 1.0). If omitted,
STEP 7 supplies the "%" character.

In SCL, you must enter the "%" before the address to indicate that it is an absolute address.
Without the "%", STEP 7 generates an undefined tag error at compile time

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 113

PLC concepts

5.3 Processing of analog values

Configuring the 1/0 in the CPU and 1/0 modules

5.3

114

I | When you add a CPU and I/O modules to your de-
b : £ : vice configuration, STEP 7 automatically assigns |
and Q addresses. You can change the default ad-

- . dressing by selecting the address field in the device
configuration and entering new numbers.
& e STEP 7 assigns digital inputs and outputs in

groups of 8 points (1 byte), whether the module
uses all the points or not.

S i e STEP 7 allocates analog inputs and outputs in
L et Sler | Vaddress) addin jpe | et groups of 2, where each analog point occupies 2
i | .
T bytes (16 bits).
RS485_1 10 O 1247 (RE4B5) BEST
= AL 1 CPU 12140 DODDT GEST
DN4Doo 1 0.1 (| C2D010
W2 12 6467 W3
AOT x120L 13 1. 81 ADY aignal board BEST
HSC_1 116 1000 High spead courts
HSC_ 2 117 High spead courty
HESC_ 3 118 High spead counts
HSC_4 119 High speod county
HSC.5 120 High speed counts
HSC_& 121 High spead counti
Fulse 1 132 Pulso gonarator (F
Pulse_2 133 Pulse generstar (P
» FROFINET L. X1 PROFINET Iriterface
O 24VDC. 2 8 S T227 DI 24, GEST

The figure shows an example of a CPU 1214C with two SMs and one SB. In this example, you
could change the address of the DI8 module to 2 instead of 8. The tool assists you by changing
address ranges that are the wrong size or conflict with other addresses.

Processing of analog values

Analog signal modules provide input signals or expect output values that represent either a
voltage range or a current range. These ranges are 10V, £5V, 2.5V, or 0 - 20 mA. The
values returned by the modules are integer values where 0 to 27648 represents the rated range
for current, and -27648 to 27648 for voltage. Anything outside the range represents either an
overflow or underflow. See the tables for analog input representation (Page 1409) and analog
output representation (Page 1410) for details about the types of out-of-range values.

In your control program, you probably need to use these values in engineering units, for
example to represent a volume, temperature, weight or other quantitative value. To do this for
an analog input, you must first normalize the analog value to a real (floating point) value from
0.0to 1.0. Then you must scale it to the minimum and maximum values of the engineering units
that it represents. For values that are in engineering units that you need to convert to an analog
output value, you first normalize the value in engineering units to a value between 0.0 and 1.0,
and then scale it between 0 and 27648 or -27648 to 27648, depending on the range of the
analog module. STEP 7 provides the NORM_X and SCALE_X instructions (Page 286) for this
purpose. You can also use the CALCULATE instruction (Page 232) to scale the analog values
(Page 41).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

Example: analog value processing

5.3 Processing of analog values

Consider, for example, an analog input that has a current range of 0 - 20 mA. The analog input
module returns values in the range 0 to 27648 for measured values. For this example, consider
that you are using this analog input value to measure a temperature range from 50 °C to 100 °C.
A few sample values would have the following meanings:

Analog input value Engineering units
0 50 °C

6192 62.5°C

12384 75 °C

18576 87.5°C

27648 100 °C

The calculation for determining engineering units from the analog input value in this example

is as follows:

Engineering units value = 50 + (Analog input value) * (100 - 50) / (27648 - 0)

For the general case, the equation would be:

Englineering units value = (Low range of engineering units) +
(Analog input value) *
(High range of engineering units - Low range of engineering units) /
(Maximum analog input range - Minimum analog input range)

In PLC applications, the typical method is to normalize the analog input value to a floating point
value between 0.0 and 1.0. Then, you would scale the resulting value to a floating point value
in the range of your engineering units. For simplicity, the following LAD instructions use
constant values for the ranges; you might actually choose to use tags:

Network 1
MORM_X
“Tag_1" Int to Real “Tag_2"
{ | EN { }
0 — MIN “Mormalized_
"Al_in"® VALUE out — value”
27648 (X7
Network 2
SCALE_X
"Tag_2" Real to Real "Tag_3"
] |
{ | EN { }
50.0 AN ouTt “Scaled_value”
"Mormalized_
value” WALUE
1000 Tl

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

115

PLC concepts

5.4 Data types

5.4 Data types

Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be used
by that instruction (example: the IN1 input of an ADD instruction). An actual parameter is the
memory location (preceded by a "%" character) or constant containing the data to be used by
the instruction (example %MD400 "Number_of_Widgets"). The data type of the actual
parameter specified by you must match one of the supported data types of the formal
parameter specified by the instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
(direct) memory address. Tags associate a symbolic name (tag name) with a data type,
memory area, memory offset, and comment, and can be created either in the PLC tags editor
or in the Interface editor for a block (OB, FC, FB and DB). If you enter an absolute address that
has no associated tag, you must use an appropriate size that matches a supported data type,
and a default tag will be created upon entry.

All data types except String, Struct, Array, and DTL are available in the PLC tags editor and the
block Interface editors. String, Struct, Array, and DTL are available only in the block Interface
editors. You can also enter a constant value for many of the input parameters.

e Bit and Bit sequences (Page 117): Bool (Boolean or bit value), Byte (8-bit byte value), Word
(16-bit value), DWord (32-bit double word value)

® Integer (Page 118)
— USInt (unsigned 8-bit integer), Sint (signed 8-bit integer),
— Ulnt (unsigned 16-bit integer), Int (signed 16-bit integer)
— UDInt (unsigned 32-bit integer), DInt (signed 32-bit integer)

® Floating-point Real (Page 118): Real (32-bit Real or floating-point value), LReal (64-bit Real
or floating-point value)

e Time and Date (Page 119): Time (32-bit IEC time value), Date (16-bit date value), TOD (32-
bit time-of-day value), DTL (12-byte date-and-time structure)

® (Character and String (Page 120): Char (8-bit single character), String (variable-length string
of up to 254 characters)

e Array (Page 122)

e Data structure (Page 123): Struct
e PLC data type (Page 123)

e Variant data tvype (Page [124)

S7-1200 Programmable controller
116 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.4 Data types

Although not available as data types, the following BCD numeric format is supported by the
conversion instructions:

Table 5-28 Size and range of the BCD format
Format | Size (bits) | Numeric Range Constant Entry Examples
BCD16 |16 -999 to 999 123, -123
BCD32 |32 -9999999 to 9999999 1234567, -1234567

54.1 Bool, Byte, Word, and DWord data types
Table 5-29 Bit and bit sequence data types
Data Bit Number Number Constant Address
type size type range examples examples
Bool 1 Boolean FALSE or TRUE TRUE 11.0
Binary 2#0 or 2#1 2#0 32-01 .
Unsigned integer |0 or1 1 DB1 :DBX2.3
Octal 8#0 or 8#1 8#1 Tag_name
Hexadecimal 16#0 or 16#1 16#1
Byte 8 Binary 2#0 to 2#1111_1111 2#1000_1001 IB2
Unsigned integer | 0 to 255 15 MB10
- . DB1.DBB4
Signed integer -128 to 127 -63 Tag_name
Octal 8#0 to 8#377 8#17
Hexadecimal B#16#0 to B#16#FF, 16#0 to B#16#F, 16#F
16#FF
Word 16 Binary 2#0 to 2#1111_1111_1111_1111 | 2#1101_0010_1001_0110 | MW10
Unsigned integer | 0 to 65535 61680 DB1.DBW2
- . Tag_name
Signed integer -32768 to 32767 72
Octal 8#0 to 8#177_777 8#170_362
Hexadecimal W#16#0 to W#16#FFFF, W#16#F1CO0, 16#A67B
16#0 to 16#FFFF
DWord 32 Binary 2#0 to 2#1101_0100_1111_1110 | MD10
2#1111_1111_1111_1111_1111 | _1000_1100 DB1.DBD8
111111111 Tag_name
Unsigned integer* | 0 to 4_294_967_295 15_793_935
Signed integer* -2_147_483_648 to -400000

2_147_483_647

Octal

8#0 to 8#37_777_777_777

8#74_177_417

Hexadecimal

DW#16#0000_0000 to
DW#16#FFFF_FFFF,

16#0000_0000 to
16#FFFF_FFFF

DW#16#20_F30A,
16#B_01F6

* The underscore

is a thousands separator to enhance readability for numbers greater than eight digits.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

117

PLC concepts

5.4 Data types

5.4.2

5.4.3

118

Integer data types
Table 5-30 Integer data types (U = unsigned, S = short, D= double)
Data Bit size | Number Range Constant examples Address
type examples
usSint |8 0 to 255 78, 2#01001110 MBO, DB1.DBB4,
Sint 8 -128 to 127 +50, 16#50 Tag_name
Ulnt 16 0 to 65,535 65295, 0 MW2, DB1.DBW?2,
Int 16 -32,768 to 32,767 30000, +30000 Tag_name
UDInt |32 0 to 4,294,967,295 4042322160 MD6, DB1.DBDS,
Dint 32 -2,147,483,648 to 2,147,483,647 | -2131754992 Tag_name

Floating-point real data types

Real (or floating-point) numbers are represented as 32-bit single-precision numbers (Real), or
64-bit double-precision numbers (LReal) as described in the ANSI/IEEE 754-1985 standard.
Single-precision floating-point numbers are accurate up to 6 significant digits and double-
precision floating point numbers are accurate up to 15 significant digits. You can specify a
maximum of 6 significant digits (Real) or 15 (LReal) when entering a floating-point constant to
maintain precision.

Table 5-31 Floating-point real data types (L=Long)
Data Bit size | Number range Constant Examples Address examples
type
Real 32 -3.402823e+38 to -1.175 495e-38, | 123.456, -3.4, 1.0e-5 MD100,
+0, DB1.DBDS,
+1.175 495e-38 to +3.402823e+38 Tag_name
LReal 64 -1.7976931348623158e+308 to 12345.123456789¢e40, | DB_name.var_nam

-2.2250738585072014e-308,
*0,
+2.2250738585072014e-308 to
+1.7976931348623158e+308

1.2E+40

e

Rules:

e No direct
addressing
support

® Canbe
assigned in an
OB, FB, or FC
block interface
table

Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6 (Real), or 15 (LReal). For example (Real): 100 000 000 + 1 = 100 000 000.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.4 Data types
544 Time and Date data types
Table 5-32 Time and date data types
Data type Size Range Constant Entry Examples
Time 32 bits | T#-24d_20h_31m_23s_648ms to T#5m_30s
T#24d_20h_31m_23s_647ms T#1d_2h_15m_30s_45ms
Stored as: -2,147,483,648 ms to TIME#10d20h30m20s630ms
+2,147,483,647 ms 500h10000ms
10d20h30m20s630ms
Date 16 bits | D#1990-1-1 to D#2168-12-31 D#2009-12-31
DATE#2009-12-31
2009-12-31
Time_of Day | 32 bits | TOD#0:0:0.0 to TOD#23:59:59.999 TOD#10:20:30.400
TIME_OF_DAY#10:20:30.400
23:10:1
DTL 12 Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20:30:20.25
(Dateand | bytes | Max: DTL#2262-04-11:23:47:16.854 775 |0
Time Long) 807

Time
TIME data is stored as a signed double integer interpreted as milliseconds. The editor format
can use information for day (d), hours (h), minutes (m), seconds (s) and milliseconds (ms).
It is not necessary to specify all units of time. For example T#5h10s and 500h are valid.

The combined value of all specified unit values cannot exceed the upper or lower limits in
milliseconds for the Time data type (-2,147,483,648 ms to +2,147,483,647 ms).

Date

DATE data is stored as an unsigned integer value which is interpreted as the number of days
added to the base date 01/01/1990, to obtain the specified date. The editor format must specify
a year, month and day.

TOD

TOD (TIME_OF_DAY) data is stored as an unsigned double integer which is interpreted as the
number of milliseconds since midnight for the specified time of day (Midnight = 0 ms). The hour
(24hr/day), minute, and second must be specified. The fractional second specification is
optional.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 119

PLC concepts

5.4 Data types

DTL

5.4.5

120

DTL (Date and Time Long) data type uses a12 byte structure that saves information on date
and time. You can define DTL data in either the Temp memory of a block or in a DB. A value
for all components must be entered in the "Start value" column of the DB editor.

Table 5-33 Size and range for DTL
Length | Format Value range Example of value in-
(bytes) put
12 Clock and calendar Min.: DTL#1970-01-01-00:00:00.0 DTL#2008-12-16-20

Year-Month-
Day:Hour:Minute:
Second.Nanoseconds

Max.: DTL#2554-12-31-23:59:59.999 999 999

:30:20.250

Each component of the DTL contains a different data type and range of values. The data type

of a specified value must match the data type of the corresponding components.

Table 5-34 Elements of the DTL structure
Byte Component Data type Value range
0 Year UINT 1970 to 2554
1
2 Month USINT 1to 12
3 Day USINT 1 to 31
4 Weekday ' USINT 1(Sunday) to 7(Saturday) '
5 Hour USINT 0to23
6 Minute USINT 0to 59
7 Second USINT 0to 59
8 Nanoseconds UDINT 0 to 999 999 999
9
10
11

' The format Year-Month-Day:Hour:Minute:
Second.Nanosecond does not include the weekday.

Character and String data types

Table 5-35 Character and String data types
Data type | Size Range Constant Entry Examples
Char 8 bits 16#00 to 16#FF 'ALtY'@' 'L Y
WChar 16 Dbits 16#0000 to 16#FFFF ‘ALY '@', ‘8", 'Y, Asian characters, Cyrillic char-
acters, and others
String n+ 2 bytes | n=(0 to 254 bytes) "ABC"
WString n+ 2 words | n=(0to 65534 words) |"8123@XYZ.COM"

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.4 Data types

Char and WChar

A Char occupies one byte in memory and stores a single character coded in ASCII format,
including the extended ASCII character codes. A WChar occupies one word in memory and can
contain any double-byte character representation.

The editor syntax uses a single quote character before and after the character. You can use
visible characters and control characters.

String and WString

The CPU supports the String data type for storing a sequence of single-byte characters. The
String data type contains a total character count (number of characters in the string) and the
current character count. The String type provides up to 256 bytes for storing the maximum total
character count (1 byte), the current character count (1 byte), and up to 254 bytes in the string.
Each byte in a String data type can be any value from 16#00 - 16#FF.

The WString data type provides for longer strings of one-word (double-byte) values. The first
word contains the maximum total character count; the next word contains the total character
count, and the following string can contain up to 65534 words. Each word in a WString data type
can be any value from 16#0000 - 16#FFFF.

You can use literal strings (constants) for instruction parameters of type IN using single quotes.
For example, ‘ABC’ is a three-character string that could be used as input for parameter IN of
the S_CONV instruction. You can also create string variables by selecting data type "String" or
"WString" in the block interface editors for OB, FC, FB, and DB. You cannot create a string in
the PLC tags editor.

You can specify the maximum string size in bytes (String) or words (WString) by entering
square brackets after the keyword "String" or "WString" after you select one of those data types
from the data type drop-down list. For example, "MyString String[10]" would specify a 10-byte
maximum size for MyString. If you do not include the square brackets with a maximum size,
then 254 is assumed for a string and 65534 for a WString. "MyWString WString[1000]" would
specify a 1000-word WString.

The following example defines a String with maximum character count of 10 and current
character count of 3. This means the String currently contains 3 one-byte characters, but could
be expanded to contain up to 10 one-byte characters.

Table 5-36 Example of a String data type
Total Charac- | Current Char- | Character 1 Character 2 Character 3 Character 10
ter Count acter Count
10 3 'C' (16#43) '‘A' (16#41) T' (16#54) -
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 11
S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 121

PLC concepts

5.4 Data types

5.4.6

Arrays

122

The following example defines a WString with maximum character count of 500 and current
character count of 300. This means the String currently contains 300 one-word characters, but
could be expanded to contain up to 500 one-word characters.
Table 5-37 Example of a WString data type
Total Charac- | Current Char- | Character 1 Characters Character Character 500
ter Count acter Count 210 299 300
500 300 'a' (16#0084) | ASCII charac- | 'M' (16#004D) -
ter words
Word 0 Word 1 Word 2 Words 3to 300 | Word 301 Word 501
ASCII control characters can be used in Char, Wchar, String and WString data. The following
table shows examples of control character syntax.
Table 5-38 Valid ASCII control characters
Control char- | ASCIl Hex | ASCIl Hex val- Control function Examples
acters value (Char) ue (WChar)
$SL or $I 16#0A 16#000A Line feed '$LText', '$0AText'
$N or $n 16#0A and 16#000A and Line break '$NText', '$0A
16#0D 16#000D The new line shows two char- $0DText
acters in the string.
$P or $p 16#0C 16#000C Form feed '$PText', '$OCText'
$R or $r 16#0D 16#000D Carriage return (CR) '$RText','$0DText'
$T or $t 16#09 16#0009 Tab '$TText', '$09Text'
$$ 16#24 16#0024 Dollar sign '100$$', '100$24"'
$ 16#27 16#0027 Single quote '$'Text$",'$27 Text
$27
Array data type
You can create an array that contains multiple elements of the same data type. Arrays can be
created in the block interface editors for OB, FC, FB, and DB. You cannot create an array in the
PLC tags editor.
To create an array from the block interface editor, name the array and choose data type "Array
[lo .. hi] of type", then edit "lo", "hi", and "type" as follows:
® |o - the starting (lowest) index for your array
® hi - the ending (highest) index for your array
® type - one of the data types, such as BOOL, SINT, UDINT
S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN

PLC concepfts

Table 5-39

5.4 Data types

ARRAY data type rules

Data Type

Array syntax

ARRAY

Name [index1_min..index1_max, index2_min..index2_max] of <data type>

All array elements must be the same data type.

The index can be negative, but the lower limit must be less than or equal to the upper limit.
Arrays can have one to six dimensions.

Multi-dimensional index min..max declarations are separated by comma characters.
Nested arrays, or arrays of arrays, are not allowed.

The memory size of an array = (size of one element * total number of elements in array)

Array index Valid index data types Array index rules

ble

Constant or varia- | USInt, Sint, Ulint, Int, UDInt, ® Value limits: -32768 to +32767

Dint e Valid: Mixed constants and variables

® Valid: Constant expressions

® Not valid: Variable expressions

5.4.7

54.8

Example: array ARRAYT1..20] of REAL One dimension, 20 elements

declarations ARRAY[-5..5] of INT One dimension, 11 elements
ARRAYTI1..2, 3..4] of CHAR Two dimensions, 4 elements

Example: array ad- ARRAY1[0] ARRAY1 element 0

dresses ARRAY2[1,2] ARRAY2 element [1,2]

ARRAY3[i,j] Ifi =3 and j=4, then ARRAY3 element
[3, 4] is addressed

Data structure data type

You can use the data type "Struct" to define a structure of data consisting of other data types.
The struct data type can be used to handle a group of related process data as a single data unit.
A Struct data type is named and the internal data structure declared in the data block editor or
a block interface editor.

Arrays and structures can also be assembled into a larger structure. A structure can be nested
up to eight levels deep. For example, you can create a structure of structures that contain
arrays.

PLC data type

The PLC data type editor lets you define data structures that you can use multiple times in your
program. You create a PLC data type by opening the "PLC data types" branch of the project tree
and double-clicking the "Add new data type" item. On the newly created PLC data type item,
use two single-clicks to rename the default name and double-click to open the PLC data type
editor.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 123

PLC concepts

5.4 Data types

5.4.9

5.4.10

124

You create a custom PLC data type structure using the same editing methods that are used in
the data block editor. Add new rows for any data types that are necessary to create the data
structure that you want.

If a new PLC data type is created, then the new PLC type name will appear in the data type
selector drop-down lists in the DB editor and code block interface editor.

You can potentially use PLC data types in the following ways:

® As a data type in a code block interface or in data blocks

® As atemplate for the creation of multiple global data blocks that use the same data structure
® As a data type for PLC tag declarations the | and Q memory areas of the CPU

For example, a PLC data type could be a recipe for mixing colors. You can then assign this PLC
data type to multiple data blocks. You can adjust the variables within each data block to create
a specific color.

Variant pointer data type

The data type Variant can point to variables of different data types or parameters. The Variant
pointer can point to structures and individual structural components. The Variant pointer does
not occupy any space in memory.
Table 5-40 Properties of the Variant pointer

Length Representation | Format Example entry

(Byte)

0 Symbolic Operand MyTag

DB_name.Struct_name.element_name | MyDB.Struct1.pressure1
Absolute Operand %MW10
DB_number.Operand Type Length P#DB10.DBX10.0 INT 12
Accessing a "slice" of a tagged data type

PLC tags and data block tags can be accessed at the bit, byte, or word level depending on their
size. The syntax for accessing such a data slice is as follows:

e "<PLC tag name>".xn (bit access)

e "<PLC tag name>".bn (byte access)

e "<PLC tag name>".wn (word access)

e "<Data block name>".<tag name>.xn (bit access)

e "<Data block name>".<tag name>.bn (byte access)
e "<Data block name>".<tag name>.wn (word access)

A double word-sized tag can be accessed by bits 0 - 31, bytes 0 - 3, or word O - 1. A word-sized
tag can be accessed by bits 0 - 15, bytes 0 - 1, or word 0. A byte-sized tag can be accessed by

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.4 Data types

bits 0 - 7, or byte 0. Bit, byte, and word slices can be used anywhere that bits, bytes, or words
are expected operands.

BYTE

x31|x30[x29[x28 |x27 [x26 | x25|x24

WORD

Note

Valid data types that can be accessed by slice are Byte, Char, Conn_Any, Date, Dint, DWord,
Event_Any, Event_Att, Hw_Any, Hw_Device, HW_Interface, Hw_lo, Hw_Pwm,
Hw_SubModule, Int, OB_Any, OB_Att, OB_Cyclic, OB_Delay, OB_WHINT, OB_PCYCLE,

OB_STARTUP, OB_TIMEERROR, OB_Tod, Port, Rtm, Sint, Time, Time_Of_Day, UDInt, UlInt,
USInt, and Word. PLC Tags of type Real can be accessed by slice, but data block tags of type
Real cannot.

Examples
In the PLC tag table, "DW" is a declared tag of type DWORD. The examples show bit, byte, and
word slice access:
LAD FBD SCL
Bit access " 5] & IF "DW".x11 THEN
| I "D T T — . e
2 END_IF;
Byte access D" b2 _ IF "DW".b2 = "DW".b3
| == | By‘tE THEN
_ e "DW" b2 — IN1 e
Durt.b3 "L b3 — IN2 END_TF;
Word access AND out:= "DW".w0 AND
Ward "DW" .wl;
EM EMOD =
"DV e 1M1 ouT "™ a0l ouT
D] — IR2 3E "D] ENO

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

125

PLC concepts

5.4 Data types

5.4.11

Declaration

Example

126

Accessing a tag with an AT overlay

The AT tag overlay allows you to access an already-declared block tag with an overlaid
declaration of a different data type. You can, for example, address the individual bits of a tag of
a Byte, Word, or DWord data type with an Array of Bool. AT overlays are available for the
following types of tags:

® Tags in a standard-access block

® Retentive tags in an optimized block

To overlay a parameter, declare an additional parameter directly after the parameter that is to
be overlaid and select the data type "AT". The editor creates the overlay, and you can then
choose the data type, struct, or array that you wish to use for the overlay.

This example shows the input parameters of a standard-access FB. An array of Booleans is an
overlay for the byte tag B1:

aj = B1 Byte 0.0
-1 - OV AT"B1" Array[0..7] of Bool 0.0
q = ov[o] Boal 0.0
- = ov[1] Bool 0.1
q = ov[2] Boal 02
) = ov[3] Bool 03
q = ov[4] Boal 0.4
) = ovls] Bool 05
q = ov[s] Boal 0.6
) = ov[7] Bool 07

Another example is a DWord tag overlaid with a Struct. The Struct includes a Word, Byte, and
two Booleans:

<1 = DwA Dwiord 20
-1 » DW1_Struct AT"DWA™ Struct 20
- L Ll Word 0.0
4] = B1 Byte 20
- L BO1 Bool 3.0
S | = BO2 Bool 31

The Offset column of the block interface shows the location of the overlaid data types relative
to the original tag.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

You can address the overlay types directly in the program logic:

5.5 Using a memory card

LAD FBD
#0OV[1] & IF #OV[1l] THEN
| l #OV[1] —
4DV Struct __ IF #DW1_Struct.Wl = W#16#000C THEN
== Word
| Word | £DWI_Struct. Wi N1
WE16£000C WH#168#000C N2 —
MOVE S := #DW1l_Struct.Bl;
EM ENO = = EN 3 0OUTI <77
#DWA_Struct.B1 IN 4 OUTI #DWI1 _Struct.B1 M ENQ —
& IF #OV[4] AND #DW1l Struct.BO2 THEN
#0OV[4] #DW1_Struct.BO2 -
I 1 1 FOV[4] —
_I ' v #DWI_StructBO2 = ¢ -
Rules
® |n FB and FC blocks with standard (not optimized) access, overlaying of tags is possible.
® |n optimized FB and FC blocks, overlaying of tags is possible for any tags that are retentive.
® You can overlay parameters for all block types and all declaration sections.
® You can use an overlaid parameter like any other block parameter.
® You cannot overlay parameters of type VARIANT.
® The size of the overlaying parameter must be less than or equal to the size of the overlaid
parameter.
® You must declare the overlaying variable immediately after the variable that it overlays and
select the keyword "AT" as the initial data type selection.
5.5 Using a memory card

Note

The CPU supports only the pre-formatted SIMATIC memory cards (Page 1478).

Before you copy any program to the formatted memory card, delete any previously saved
program from the memory card.

You can use a memory card as either a transfer card or as a program card. Transfer cards and
program cards contain all of the code blocks and data blocks, any technology objects, and the

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

127

PLC concepts

5.5 Using a memory card

device configuration. Transfer cards and program cards do not contain, for example, force
tables, watch tables, or PLC tag tables.

® Use a transfer card (Page 131)) to copy a program to the internal load memory of the CPU
without using STEP 7.
You can use an empty transfer card to access a password-protected CPU when you have
lost or forgotten the password (Page 140).

® Use a program card (Page 134) as external load memory for the CPU.

You also use a memory card when downloading firmware updates (Page 137).

5.5.1 Inserting a memory card in the CPU

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when you
handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection switch
away from the "Lock" position.

Note that if you do insert a write-protected memory card into the CPU, STEP 7
will display a diagnostic message on the next power up alerting you to that
fact. The CPU will power up without failure, but instructions involving recipes
or data logs, for example, will return errors if the card is write-protected.

A\ WARNING

Verify that the CPU is not running a process before inserting the memory card.

If you insert a memory card (whether configured as a program card, transfer card, or firmware
update card) into a running CPU, the CPU goes immediately to STOP mode, which might
cause process disruption that could result in death or severe personal injury.

Before inserting or removing a memory card, always ensure that the CPU is not actively
controlling a machine or process. Always install an emergency stop circuit for your application
or process.

S7-1200 Programmable controller
128 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.5 Using a memory card

Note
Do not insert V3.0 program transfer cards into S7-1200 V4.x CPUs.

Version 3.0 program transfer cards are not compatible with version S7-1200 V4.x CPUs.
Inserting @ memory card that contains a V3.0 program causes a CPU error.

If you do insert an invalid version program transfer card (Page 131), you should remove the
card, and perform a STOP to RUN transition, a memory reset (MRES), or cycle power. After you
recover the CPU from the error condition, you can download a valid V4.x CPU program.

To transfer a V3.0 program to a V4.x program, you must use the TIA Portal to Change Device
in the Hardware Configuration.

Note

If you insert a memory card with the CPU in STOP mode, the diagnostic buffer displays a
message that the memory card evaluation has been initiated. The CPU will evaluate the
memory card the next time you either change the CPU to RUN mode, reset the CPU memory
with an MRES, or power-cycle the CPU.

Table 5-41 Inserting a memory card

To insert a memory card, open the top CPU
door and insert the memory card in the slot. A
push-push type connector allows for easy in-
sertion and removal.

The memory card is keyed for proper installa-
tion.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 129

PLC concepts

5.5 Using a memory card

CPU behavior when you insert a memory card
When you insert a memory card in the CPU, the CPU peforms the following steps:
1. Transitions to STOP mode (if not already in STOP mode)
2. Prompts for one of the following choices:
— Power cycle
— Transition to RUN mode
— Perform a memory reset

3. Evaluates the card

How the CPU evaluates the memory card

If you do not configure the CPU to "Disable copy from internal load memory to external load
memory" in the Protection properties of the device configuration (Page 195), the CPU
determines what type of memory card you inserted:

e Empty memory card: A blank memory card does not have a job file (S7_JOB.S7S). If you
insert a blank memory card, the CPU adds a program job file. It then copies internal load
memory to external load memory (the program file on the memory card) and erases internal
load memory.

e Blank program card: A blank program card has a program job file that is empty. In this case,
the CPU copies internal load memory to external load memory (the program file on the
memory card) and erases internal load memory.

If you configured the CPU to "Disable copy from internal load memory to external load memory"
in the Protection properties of the device configuration, the CPU behaves as follows:

e Empty memory card: A blank memory card does not have a job file (S7_JOB.S7S). If you
insert a blank memory card, the CPU does nothing. It does not create a program job file and
it does not copy internal load memory to external load memory (the program file on the
memory card). It does not erase internal load memory.

e Blank program card: A blank program card has a program job file that is empty. In this case,
the CPU performs no action. It does not copy internal load memory to external load memory
(the program file on the memory card). It does not erase internal load memory.

If you insert a program card (Page 134), transfer card (Page 131), or card that contains a
firmware update ' (Page 137)into the CPU, the configuration setting for "Disable copy from
internal load memory to external load memory" has no effect on how the CPU evaluates the
memory card.

S7-1200 Programmable controller
130 System Manual, V4.4 11/2019, ASE02486680-AN

PLC concepfts

5.5 Using a memory card

5.5.2 Configuring the startup parameter of the CPU before copying the project to the
memory card

When you copy a program to a transfer card or a program card, the program includes the
startup parameter for the CPU. Before copying the program to the memory card, always ensure
that you have configured the operating mode for the CPU following a power-cycle. Select
whether the CPU starts in STOP mode, RUN mode, or in the previous mode (prior to the power

cycle).
Startup
Startup after POWER ON: | Varm restart-RUN -
Comparizon preset to actusl Mo restart (stay in STOP mode)
configuration: MliuBed Toadil]

VWarm restart - mode before POWER OFF }L

Configuration time for central
and distributed /Q: | 60000 ms

B OBs should be interruptible

5.5.3 Transfer card

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Handle the memory card safely through one or both of the following means:
e Make contact with a grounded conductive pad.
e \Wear a grounded wrist strap whenever you handle the memory card.

Store the memory card in a conductive container.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 131

PLC concepts

5.5 Using a memory card

Creating a transfer card

Remember to configure the startup parameter of the CPU (Page 131) before copying a
program to the transfer card. To create a transfer card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card reader/
writer attached to your computer. (If the card is write-protected, slide the protection switch
away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program, data logs, recipes,
or a firmware update, you must delete the files before reusing the card. Use Windows
Explorer to display the contents of the memory card and delete the "S7_JOB.S7S" file and
also delete any existing folders (such as "SIMATIC.S7S","FWUPDATE.S7S", "DatalLogs",
and "Recipes").

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__"and "crdinfo.bin" files are required for the memory card. If you delete these
files, you cannot use the memory card with the CPU.

2. Inthe Project tree (Project view), expand the "SIMATIC Card Reader" folder and select your
card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Transfer" from the "Card type" drop-down menu.
At this point, STEP 7 creates the empty transfer card. If you are creating an empty transfer
card, such as to recover from a lost CPU password (Page 140), remove the transfer card
from the card reader.

byl nr ®

Ston di
EREREARL Storage medivm

Mefmnry space

Free space: | 25069055 Bytes
Used space: | 8450084 Bytes
Write-protected

Card characteristics

Marna |50 cad (3)

cerdope A . -

File syscemc | FAT32
Capacity | 33550040 Bytes

Savigl number | SMC_3b5c090600

[Cancal

5. Add the program by selecting the CPU device (such as PLC_1[CPU 1214C DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

S7-1200 Programmable controller
132 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.5 Using a memory card

6. Inthe "Load preview" dialog, click the "Load" button to copy the CPU device to the memory
card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a transfer card

A\ WARNING
Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your
process is in a safe state.

Note
Do not insert V3.0 program transfer cards into later model CPUs.

Version 3.0 program transfer cards are not compatible with later model S7-1200 CPUs.
Inserting a memory card that contains a V3.0 program causes a CPU error.

If you do insert aninvalid version program transfer card, then remove the card, performa STOP
to RUN transition, a memory reset (MRES), or cycle power. After you recover the CPU from the
error condition, you can download a valid CPU program

To transfer the program to a CPU, follow these steps:

1. Insert the transfer card into the CPU (Page (128). If the CPU is in RUN, the CPU will go to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated. At this point, the existing program is still in the CPU.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the reboot, The CPU evaluates the memory card and copies the program to the
internal load memory of the CPU.
The RUN/STOP LED alternately flashes green and yellow to indicate that the program is
being copied. When the RUN/STOP LED turns on (solid yellow) and the MAINT LED flashes
(yellow), the copy process has finished. You can then remove the memory card.

4. Reboot the CPU (either by restoring power or by the alternative methods for rebooting) to
evaluate the new program that was transferred to internal load memory.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the project.

Note

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 133

PLC concepts

5.5 Using a memory card

554 Program card

NOTICE

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when you
handle the memory card. Store the memory card in a conductive container.

Check that the memory card is not write-protected. Slide the protection switch
away from the "Lock" position.

Before you copy any program elements to the program card, delete any pre-
viously saved programs from the memory card.

Creating a program card

When used as a program card, the memory card is the external load memory of the CPU. If you
remove the program card, the internal load memory of the CPU is empty.

Note

If you insert a blank memory card into the CPU and perform a memory card evaluation by either
power cycling the CPU, performing a STOP to RUN transition, or performing a memory reset
(MRES), the program and force values in internal load memory of the CPU are copied to the
memory card. (The memory card is now a program card.) After the copy has been completed,
the program in internal load memory of the CPU is then erased. The CPU then goes to the
configured startup mode (RUN or STOP).

S7-1200 Programmable controller
134 System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.5 Using a memory card

Always remember to configure the startup parameter of the CPU (Page 131) before copying a
project to the program card. To create a program card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card reader/
writer attached to your computer. (If the card is write-protected, slide the protection switch
away from the "Lock" position.)

If you are reusing a SIMATIC memory card that contains a user program, data logs, recipes,
or a firmware update, you must delete the files before reusing the card. Use Windows
Explorer to display the contents of the memory card and delete the following files and folders
if they exist:

S7_JOB.S7S
- SIMATIC.S7S
- FWUPDATE.S7S

— DatalLogs

— Recipes

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__"and "crdinfo.bin" files are required for the memory card. If you delete these
files, you cannot use the memory card with the CPU.

2. Inthe Project tree (Project view), expand the "Card Reader/USB memory" folder and select
your card reader.

3. Display the "Memory card" dialog by right-clicking the drive letter corresponding to the
memory card in the card reader and selecting "Properties" from the context menu.

4. In the "Memory card" dialog, select "Program" from the shortcut menu.

Stormge medium

Storage

Memony space
Free space’ | 5136138 Bytes
Used spamcer | 8222912 Bytes
| Wre-protected
Card characteristics
¥ Wame: |50 cad (50
File systemc | FAT3D
Capadty | 33550040 Bytes
Senal number | SMC_385c897100

Uabls lor | HWLALC 100
PLC card mode
cardpe T -
»,

QK ancel

5. Add the program by selecting the CPU device (such as PLC_1 [CPU 1214C DC/DC/DC]) in
the Project tree and dragging the CPU device to the memory card. (Another method is to
copy the CPU device and paste it to the memory card.) Copying the CPU device to the
memory card opens the "Load preview" dialog.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 135

PLC concepts

5.5 Using a memory card

6. Inthe "Load preview" dialog, click the "Load" button to copy the CPU device to the memory
card.

7. When the dialog displays a message that the CPU device (program) has been loaded
without errors, click the "Finish" button.

Using a program card as the load memory for your CPU

136

A\ WARNING
Risks associated with inserting a program card

Verify that the CPU is not actively running a process before inserting the memory card.

Inserting a memory card will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting a memory card, always ensure that the CPU is offline and in a safe state.

To use a program card with your CPU, follow these steps:

1. Insert the program card into the CPU. If the CPU is in RUN mode, the CPU goes to STOP
mode. The maintenance (MAINT) LED flashes to indicate that the memory card needs to be
evaluated.

2. Power-cycle the CPU to evaluate the memory card. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

3. After the CPU reboots and evaluates the program card, the CPU erases the internal load
memory of the CPU.

The CPU then goes to the start-up mode (RUN or STOP) that you configured for the CPU.

The program card must remain in the CPU. Removing the program card leaves the CPU with
no program in internal load memory.

A\ WARNING
Risks associated with removing a program card

If you remove the program card, the CPU loses its external load memory and generates an
error. The CPU goes to STOP mode and flashes the error LED.

Control devices can fail in an unsafe condition, resulting in unexpected operation of controlled
equipment. Such unexpected operations could result in death or serious injury to personnel,
and/or damage to equipment.

Do not remove the program card without understanding that you are removing the program
from CPU.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

PLC concepfts

5.5 Using a memory card

Service life of a SIMATIC memory card
The service life of a SIMATIC memory card depends on factors such as the following:
e Number of delete and write operations per memory block
® Number of bytes written

e External influences, such as ambient temperature

Note
Effect of write and delete operations on SIMATIC memory card service life

Write or delete operations, particularly repeated (cyclic) write/delete operations, reduces the
service life of the SIMATIC memory card.

Cyclic execution of the following instructions reduces the service life of the memory card
depending on the number of write operations and data:

e CREATE_DB (with ATTRIB "Create DB in load memory")

DataLogWrite

RecipeExport

Recipelmport (if target DB is in load memory)

WRIT_DBL

SET_TIMEZONE

In addition to cyclic write/ or delete operations, writing or deleting very large amounts of data
also adversely affects the service life of the SIMATIC memory card.

5.5.5 Firmware update

You can use a SIMATIC memory card for performing a firmware update.

NOTICE

Protect memory card and receptacle from electrostatic discharge

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap whenever
you handle the memory card. Store the memory card in a conductive container.

You use a SIMATIC memory card when downloading firmware updates from Siemens Industry
Online Support (http://support.industry.siemens.com). From this Web site, navigate to
"Downloads". From there search for the specific type of module that you need to update.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 137

http://support.industry.siemens.com

PLC concepts

5.5 Using a memory card

138

Alternatively, you can access the S7-1200 downloads Web page (https://
support.industryv.siemens.com/cs/ww/en/ps/13683/dl) directly.

Note

You cannot update an S7-1200 CPU V3.0 or earlier to S7-1200 V4.0 or V4.1 by firmware
update.

You can also perform a firmware update by one of these methods:
® Using the online and diagnostic tools of STEP 7 (Page 1272)
® Using the Web server "Module Information" standard Web page (Page 959)

® Using the SIMATIC Automation Tool (https://support.industry.siemens.com/cs/ww/en/view/
98161300)

NOTICE

Do not use the Windows formatter utility or any other formatting utility to reformat the memory
card.

If a Siemens memory card is reformatted using the Microsoft Windows formatter utility, then
the memory card will no longer be usable by a S7-1200 CPU.

To download the firmware update to your memory card, follow these steps:

1. Insert a blank SIMATIC memory card that is not write-protected into an SD card reader/
writer attached to your computer. (If the card is write-protected, slide the protection switch
away from the "Lock" position.)

You can reuse a SIMATIC memory card that contains a user program or another firmware
update, but you must delete some of the files on the memory card.

To reuse a memory card, you must delete the "S7_JOB.S7S" file and any existing "Data
Logs" folders or any folder (such as "SIMATIC.S7S" or "FWUPDATE.S7S") before
downloading the firmware update. Use Windows Explorer to display the contents of the
memory card and to delete the file and folders.

NOTICE
Do NOT delete the hidden files "__LOG__" and "crdinfo.bin" from the memory card.

The"__LOG__"and "crdinfo.bin" files are required for the memory card. If you delete these
files, you cannot use the memory card with the CPU.

2. Select the zip file for the firmware update that corresponds to your module, and download
it to your computer. Double-click the file, set the file destination path to be the root directory
of the SIMATIC memory card, and start the extraction process. After the extraction is
complete, the root directory (folder) of the memory card will contain a "FWUPDATE.S7S"
directory and the "S7_JOB.S7S" file.

3. Safely eject the card from the card reader/writer.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

https://support.industry.siemens.com/cs/ww/en/ps/13683/dl
https://support.industry.siemens.com/cs/ww/en/ps/13683/dl
https://support.industry.siemens.com/cs/ww/en/view/98161300
https://support.industry.siemens.com/cs/ww/en/view/98161300

PLC concepfts

5.5 Using a memory card

To install the firmware update, follow these steps:

A\ WARNING

Verify that the CPU is not actively running a process before installing the firmware update.

Installing the firmware update will cause the CPU to go to STOP mode, which could affect the
operation of an online process or machine. Unexpected operation of a process or machine
could result in death or injury to personnel and/or property damage.

Before inserting the memory card, always ensure that the CPU is offline and in a safe state.

1. Insert the memory card into the CPU. If the CPU is in RUN mode, the CPU then goes to
STOP mode. The maintenance (MAINT) LED flashes to indicate that the memory card
needs to be evaluated.

2. Power-cycle the CPU to start the firmware update. Alternative methods for rebooting the
CPU are to perform either a STOP-to-RUN transition or a memory reset (MRES) from
STEP 7.

Note

To complete the firmware upgrade for the module, you must ensure that the external 24 V
DC power to the module remains on.

After the CPU reboots, the firmware update starts. The RUN/STOP LED alternately flashes
green and yellow to indicate that the update is being copied. When the RUN/STOP LED
turns on (solid yellow) and the MAINT LED flashes, the copy process has finished. You must
then remove the memory card.

3. After removing the memory card, reboot the CPU again (either by restoring power or by the
alternative methods for rebooting) to load the new firmware.

The user program and hardware configuration are not affected by the firmware update. When
the CPU is powered up, the CPU enters the configured start-up state. (If the startup mode for
your CPU was configured to "Warm restart - mode before POWER OFF", the CPU will be in
STOP mode because the last state of the CPU was STOP.)

Note
Updating multiple modules connected to CPU

If your hardware configuration contains multiple modules that correspond to a single firmware
update file on the memory card, the CPU applies the updates to all applicable modules (CM,
SM, and SB) in configuration order, that is, by increasing order of the module position in Device
Configuration in STEP 7.

If you have downloaded multiple firmware updates to the memory card for multiple modules, the
CPU applies the updates in the order in which you downloaded them to the memory card.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 139

PLC concepts

5.6 Recovery from a lost password

5.6 Recovery from a lost password

If you have lost the password for a password-protected CPU, use an empty transfer card to
delete the password-protected program. The empty transfer card erases the internal load

memory of the CPU. You can then download a new user program from STEP 7 to the
CPU.

For information about the creation and use of an empty transfer card, see the section of transfer
cards (Page 131).

A\ WARNING

Verify that the CPU is not actively running a process before inserting the memory card

If you insert a transfer card in a running CPU, the CPU goes to STOP. Control devices can fail
in an unsafe condition, resulting in unexpected operation of controlled equipment. Such

unexpected operations could result in death or serious injury to personnel, and/or damage to
equipment.

Before inserting a transfer card, always ensure that the CPU is in STOP mode and your
process is in a safe state.

You must remove the transfer card before setting the CPU to RUN mode.

S7-1200 Programmable controller
140 System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

102 101 1 2 3

Communication module (CM) or communication processor (CP): Up to 3, inserted in slots 101,
102, and 103

CPU: Slot 1

PROFINET port of CPU

Signal board (SB), communication board (CB) or battery board (BB): up to 1, inserted in the CPU
Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9

(CPU 1214C, CPU 1215C and CPU 1217C allow 8, CPU 1212C allows 2, CPU 1211C does not
allow any)

e O

Configuration control

Device configuration for the S7-1200 also supports "configuration control (Page 146)" where
you can configure a maximum configuration for a project including modules that you might not
actually use. This feature, sometimes also called "option handling”, allows you to configure a
maximum configuration that you might use with variations in the installed modules in multiple
applications.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 141

Device configuration

6.1 Inserting a CPU

6.1

142

Inserting a CPU

You can insert a CPU into your _ -
project from either the Portal view or [>

Divices & @ sShow all devices
]
[s®

the Project view of STEP 7:

e Inthe Portal view, select "Devices Hemworis @ Add new device
& Networks" and click "Add new
device".

® |n the Project view, under the
project name, double-click "Add p
new device".

Devices

* | Froject]
ﬁ.ﬂ\dd new device

Be sure you insert the correct model and firmware version from the list. Selecting the CPU from
the "Add new device" dialog creates the rack and CPU.

Note
With STEP 7 V14 and later, you cannot add a V1.0 S7-1200 CPU to your project.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration
6.1 Inserting a CPU

" H " H
Add new device" dialog
Dwacs raren
ny
- L Sortrwinny Peven
[. <l s
Carchan » e
— Pl SRR R
EI ¥ o310 B)
2 8 L b A]
H=. Vamon O =
Derrpt
Wk rmmony TS KB MO ey
mqrmmm-ﬁu-r
e
o et
B o B o Al Pl
i e | e
for FD xR B mad | 000 I
rtaraon e e g, M and
" _.‘. {02
[U T paney
& Ll Seopeched 07U 1200
T e o [e |
—_

Device view of the hardware con-
figuration

|t Metwork view |0} Device view || Options
=S e EHiget H

A w | Catalog

[&# Fitezr

» [oru

v [Ségnal bosrds

+ [l Communicatans boards
+ [Battery boards

»goi
¥ (oo
» g oG
vima
v (@A
[REE]
w | * [Communestans madules
A [>)@| * (@ Technolagy modules
Selecting the CPU in the Device - =
view displays the CPU proper- s [
. . . . = FCFINET ireeace
ties in the inspector window. Rt notwsekied wath
The CPU does not have a pre- "2 o o — -
configured IP address. Youmust "0 —
manually assign an IP address & i L r—
for the CPU during the device st et} s L1520
configuration. If your CPU is con- » DR | e s
P Pulam gararstar TN
nected to a router on the net- e {0 el cese g e Perecmeziod

work, you also enter the IP ad-
dress for a router.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 143

Device configuration

6.2 Uploading the configuration of a connected CPU

6.2 Uploading the configuration of a connected CPU
STEP 7 provides two methods for uploading the hardware configuration of a connected CPU:
e Uploading the connected device as a new station

® Configuring an unspecified CPU and detecting the hardware configuration of the connected
CPU

Note, however, that the first method uploads both the hardware configuration and the software
of the connected CPU.

Uploading a device as a new station
To upload a connected device as a new station, follow these steps:
1. Expand your communications interface from the "Online access" node of the project tree.
2. Double-click "Update accessible devices".

3. Select the PLC from the detected devices.

~ [Fg Online access
1 Displaythide interfaces
» [USE [57UsE]
» [T COM[RS232/PPI multi-master cable]
« [D-Link DUB-E100 USE 2.0 Fast Ethernet .
ﬁuu? Update accessible devices
» '@ oplc_3[192.168.01]

4. From the Online menu of STEP 7, select the "Upload device as new station (hardware and
software)" menu command.

STEP 7 uploads both the hardware configuration and the program blocks.

Detecting the hardware configuration of an unspecified CPU

Cnline_popinee ook Wi, W If you are connected to a CPU, you can upload the con-
figuration of that CPU, including any modules, to your
S : project. Simply create a new project and select the "un-
I} Gvminos to device L specified CPU" instead of selecting a specific CPU.

(You can also skip the device configuration entirely by
selecting the "Create a PLC program” from the "First
steps". STEP 7 then automatically creates an unspeci-

R — fied CPU.)
Lt o From the program editor, you select the "Hardware de-
R tection" command from the "Online" menu.

S7-1200 Programmable controller
144 System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.3 Adding modules to the configuration

From the device configuration editor, you select the option for detecting the configuration of the
connected device.

-

The device is not specified
=4 Pleaie use the to speciy the CPU,

-4 Or the configuration of the connected dewce

After you select the CPU from the online dialog and click the Load button, STEP 7 uploads the
hardware configuration from the CPU, including any modules (SM, SB, or CM). You can then
configure the parameters for the CPU and the modules (Page 157).

6.3 Adding modules to the configuration
Use the hardware catalog to add modules to the CPU:

® Signal module (SM) provides additional digital or analog 1/O points. These modules are
connected to the right side of the CPU.

® Signal board (SB) provides just a few additional I/O points for the CPU. The SB is installed
on the front of the CPU.

e Battery Board 1297 (BB) provides long-term backup of the realtime clock. The BB is
installed on the front of the CPU.

e Communication board (CB) provides an additional communication port (such as RS485).
The CB is installed on the front of the CPU.

e Communication module (CM) and communication processor (CP) provide an additional
communication port, such as for PROFIBUS or GPRS. These modules are connected to the
left side of the CPU.

To insert a module into the device configuration, select the module in the hardware catalog and
either double-click or drag the module to the highlighted slot. You must add the modules to the

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 145

Device configuration

6.4 Configuration control/

device configuration and download the hardware configuration to the CPU for the modules to
be functional.

Table 6-1 Adding a module to the device configuration

Module Select the module Insert the module Result
M ~ | Catalog
S Search .
E Filter
» i@ n

» [Signal baard
» [l Commumications boards
» [Batvery board
~lmo
- '_mpns » VDT
I 6E57 220-1BF 30-0HB0
» oG« 2aDe

SB, BB | ¥lttalsg
r B :-':e.uch

° C [Filrer

» (g cry

= [Signal board
»mo

»[@oo
- (g oo
(W O2D02 s 2vDe
I £E57 223-0B0RE0RED
I 6657 223380300480
» [012002« SvDe

CMor » (@ oo
rim s
CcP a0
» g se2
r"a Communications modides
» [FROFIBYS
= [Paantaio-poant
» (g oM 1241 p528
» [oM 1240 FeaEs)
- (g O 1 240 (P 22MES)
[l 4857 24 1-1CHBiG0B0
» [&5 inmerdace

With the!"configuration control" feature (Page 146), you can add signal modules and signal
boards to your device configuration that might not correspond to the actual hardware for a

specific application, but that will be used in related applications that share a common user

program, CPU model, and perhaps some of the configured modules.

6.4 Configuration control

6.4.1 Advantages and applications of configuration control

Configuration control can be a useful solution when you create an automation solution
(machine) that you intend to use with variations in multiple installations.

You can load a STEP 7 device configuration and user program to different installed PLC
configurations. You only need to make a few easy adaptations to make the STEP 7 project
correspond to the actual installation.

S7-1200 Programmable controller
146 System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.4 Configuration control/

Configuring the central installation and optional modules

Configuration control with STEP 7 and the S7-1200 enables you to configure a maximum
configuration for a standard machine and to operate versions (options) that use a subset of this
configuration. The PROFINET with STEP 7 manual (http://
support.automation.siemens.com/WW/view/en/49948856) refers to these types of projects as
"standard machine projects".

A control data record that you program in the startup program block notifies the CPU as to which
modules are missing in the real installation as compared to the configuration or which modules
are located in different slots as compared to the configuration. Configuration control does not
have an impact on the parameter assignment of the modules.

Configuration control gives you the flexibility to vary the installation as long as you can derive
the real configuration from the maximum device configuration in STEP 7.

To activate configuration control and structure the required control data record, follow these
steps:

1. Optionally, reset the CPU to factory settings to ensure that an incompatible control data
record is not present in the CPU.

2. Select the CPU in device configuration in STEP 7.

3. From the Configuration control node in the CPU properties, select the "Enable
reconfiguration of device with user program" check box.

& Properties "} Info | % Diagnostics |

General [IO tags l System constants | Texts

» Wb server . .
Configuration control

User interiace lang...

Time of day || Configuration control for central configuration
Protection
= [Allew to reconfigure the device via the user program

Connection rescurces

Overview of addresses |

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 147

http://support.automation.siemens.com/WW/view/en/49948856
http://support.automation.siemens.com/WW/view/en/49948856

Device configuration

6.4 Configuration control/

148

4. Create a PLC data type to contain the control data record. Configure it as a struct that
includes four USints for configuration control information and additional USints to
correspond to the slots of a maximum S7-1200 device configuration, as follows:

ConfigControl_Struct

= B = I L o

[=]

10
11
12
13
14
15
16
17

Marme

« ConfigControl
- Block_length
L Block_ID

= slot_101
= Slot_102
= slot_103

<

<0

<

] = Verzion
4 = Subversion
4] = Slot_1
< = Slot_2
4] = Slot_3
< = slot_4
4] = Slot_5
< = Slot_6
4] = Slot_7
< = Slot_8
4] = Slot 9
<

<0

<

Data type Default value Comment

Struct E

Usint 16 Length of control data record, including header
Usint 196 Data record number

USint 5

Usint 0

Usint 255 Assignment for CPU annex card/Actual annexcard
Usint 255 Configured slot 2/ Assigned “real” slot

Usint 255 Configured slot 3 [Assigned “real” slot

Usint 255 Configured slot 4 [Assigned "real” slot

Usint 255 Configured slot 5/ Assigned “real” slot

Usint 255 Configured slot 6 [Assigned "real” slot

Usint 255 Configured slot 7 [Assigned “real” slot

Usint 255 Configured slot 8 [Assigned "real” slot

Usint 255 Configured slot 9 [Assigned “real” slot

Usint 255 Configured slot 101 [Assigned "real” slot

Usint 255 Configured slot 102 [Assigned “real” slot

Usint 255 Configured slot 103 [Assigned "real” slot

5. Create a data block of the PLC data type that you created.
AHd new Block

> | Additional information

Hame:
ContralDataRecord

&

Organizstion
block

LS

Function block

L

Functicn

e

Datw block

[wAdd new and open

Type:
Language:

Number:

Description:

Data blocks (DBs) 8¢ |E| iEC_DCOUNTER

Maore

X

[14 Ccn.‘-éc-cn'.'ul_-ﬁlr{-v
@ Globsl DB ~
W AmayDE
48 WRREC_SFB [SFBS3]

§ ConfigControl_Struct k

Receive_Conditions
It FILE_DB_HEADER
IE FE_PLUS
1E IEC_COUNTER

1IE| IEC_SCOUNTER
| IEC_UDCOUNTER
IE IEC_LTMER v

[oK || cancel

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.4 Configuration contro/

6. Inthis data block, configure the Block_length, Block_ID, Version, and Subversion as shown
below. Configure the values for the slots based on their presence or absence and position
in your actual installation:

— 0: Configured module is not present in the actual configuration. (The slot is empty.)
- 1109, 101 to 103: The actual slot position for the configured slot

— 255: The STEP 7 device configuration does not include a module in this slot.

Note
Configuration control not available for HSCs and PTOs on the signal board
If you have a signal board in the CPU that you configure for HSCs or PTOs, you must not

disable it with a "0" in Slot_1 of the configuration control data record. Configured HSC and
PTO devices of the CPU are mandatory regarding configuration control.

ControlDataRecord

Mame Data type | Startwvalue Comment
1 4 w Static = |
2 <@ = « ConfigControl Struct
3 |« - Block_length USInt 16 Length of control data record, including header
4 <0 = Block_ID Usint 196 Data record number
5 | - Version UsSint 5
6 |41 - Subversion Usint 0
7 |« - Slot_1 UsSint 255 Assignment for CPU annexcardiActual annexc..
8 |<ad - Slot_2 Usint 255 Configured slot 2/ Assigned "real” slot
9 |4 - Slot_3 UsSint S Configured slot 3 | Assigned “real” slot
10 |-<a1 - Slot_4 Usint 255 Configured slot 4 | Assigned “real” slot
11 <1 - Slot_5 UsSint 255 Configured slot 5/ Assigned “real” slot
12 < - Slot_6 Usint 255 Configured slot 6 1 Assigned “real” slot
13 <1 - Slot_7 UsSint 255 Configured slot 7 / Assigned “real” slot
14 <0 - Slot_8 Usint 255 Configured slot 8 | Assigned “real” slot
15 <0 - Slot_9 UsSint 255 Configured slot 9/ Assigned “real” slot
16 |-<a1 - Slat_101 Usint 255 Configured slot 101 [Assigned "real” slot
17 <1 - Slot_102 UsSint 255 Configured slot 102 [Assigned “real” slot
18 < - Slot 103 Usint 255 Configured slot 103 | Assianed "real” slot

See Example of configuration control (Page 153) for an explanation of how to assign the slot
values.

7. In the startup OB, call the extended WRREC (Write data record) instruction to transfer the
control data record that you created to index 196 of hardware ID 33. Use a label and JMP
(jump) instruction to wait for the WRREC instruction to complete.

Network 1:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 149

Device configuration

6.4 Configuration control/

WRREC

"Run_WRREC" =
33
196
"ControlDataReco
rd”

Network 2:

| "Run_WRREC"
1 1

EN
REQ
D
INDEX

RECCQRD

"busy”
11

"WRREC_DB"
WRREC
Variant
END
DOME —t"done”
BUSY —1"busy”
ERROR —"error”
STATUS "status”

WVWRREC

:JMP ;

Note

Configuration control is not in effect until the WRREC instruction transfers the control data
record in the startup OB. If you have enabled configuration control and the CPU does not have
the control data record, it will go to STOP mode when it exits STARTUP mode. Be sure that you

program the startup OB to transfer the control data record.

Module arrangement

The following table shows the slot number assignment:

Slot Modules

1 Signal board or communication board (CPU annex card)
2t09 Signal modules

101 to 103 Communication modules

Control data record

A control data record 196 contains the slot assignment and represents the actual configuration,

as shown below:

Byte Element Value Explanation
0 Block length 16 Header
1 Block ID 196
2 Version 5
3 Subversion 0
4 Assignment of CPU annex card Actual annex card, 0, or 255 | Control element
5 Assignment of configured slot 2 Actual slot, 0, or 255* Describes in each element which re-
al slot in the device is assigned to
- - the configured slot.
12 Assignment of configured slot 9 Actual slot, 0, or 255*
S7-1200 Programmable controller
150 System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.4 Configuration contro/

Byte Element Value Explanation
13 Assignment of configured slot 101 Actual slot or 255* Unlike signal modules, the actual
14 Assignment of configured slot 102 Actual slot or 255* slot for physically-present communi-
15 Assi f confi d slot 103 Actual sl 255 cation modules must be the same
ssignment of configured slot ctual slot or as the configured slot.
*Slot values:

0: Configured module is not present in the actual configuration. (The slot is empty.)

1109, 101 to 103: The actual slot position for the configured slot

255: The STEP 7 device configuration does not include a module in this slot.

Rules

Note
Alternative to creating a PLC tag type

As an alternative to creating a custom PLC tag type, you can create a data block directly with
all of the structure elements of a control data record. You could even configure multiple structs
in this data block to serve as multiple control data record configurations. Either implementation
is an effective way to transfer the control data record during startup.

Observe the following rules:

Configuration control does not support position changes for communication modules. Also,
you cannot use configuration control to deactivate communication modules. The control
data record slot positions for slots 101 to 103 must correspond to the actual installation. If
you have not configured a module for the slot in your device configuration, enter 255 for that
slot position in the control data record. If you have configured a module for the slot, enter the
configured slot as the actual slot for that slot position.

F-1/0 modules do not support configuration control. The control data record slot positions for
an F-1/0 module must equal the configured slot position for the F-I/O module. If you attempt
to move or delete a configured F-1/O module using the control data record, then all actually-
installed F-1/0 modules will raise a "parameter assignment" error and disallow exchange.

You cannot have embedded empty (unused) slots between filled (used) slots. For example,
if the actual configuration has a module in slot 4, then the actual configuration must also
have modules in slots 2 and 3. Correspondingly, if the actual configuration has a
communication module in slot 102, then the actual configuration must also have a module
in slot 101.

If you have enabled configuration control, the CPU is not ready for operation without a
control data record. The CPU returns from startup to STOP if a startup OB does not transfer
avalid control data record. The CPU does not initialize the central I/O in this case and enters
the cause for the STOP mode in the diagnostics buffer.

The CPU saves a successfully-transferred control data record in retentive memory, which
means that it is not necessary to write the control data record 196 again at a restart if you
have not changed the configuration.

Each real slot must be present only once in the control data record.

You can only assign a real slot to one configured slot.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 151

Device configuration

6.4 Configuration control/

Note
Modifying a configuration
The writing of a control data record with a modified configuration triggers the following

automatic reaction by the CPU: Memory reset with subsequent startup with this modified
configuration.

As a result of this reaction, the CPU deletes the original control data record and saves the new
control data record retentively.

Behavior during operation

Error messages

For the online display and for the display in the diagnostics buffer (module OK or module faulty),
STEP 7 uses the device configuration and not the differing real configuration.

Example: A module outputs diagnostics data. This module is configured in slot 4, but is actually
inserted in slot 3. The online view indicates that configured slot 4 is faulty. In the real
configuration, the module at slot 3 indicates an error by its LED display.

If you have configured modules as missing in the control data record (0 entry), the automation
system behaves as follows:

® Modules designated as not present in the control data record do not supply diagnostics and
their status is always OK. The value status is OK.

e Direct writing access to the outputs or writing access to the process image of outputs that
are not present proceeds with no effect; the CPU reports no access error.

e Direct read access to the inputs or read access to the process image of inputs that are not
present results in a value "0" for each input; the CPU reports no access error.

e Writing a data record to a module that is not present proceeds with no effect; the CPU
reports no error.

e Attempting to read a data record from module that is not present resuls in an error because
the CPU cannot return a valid data record.

The CPU returns the following error messages if an error occurs during writing of the control
data record:

Error code Meaning
16#80B1 Invalid length; the length information in the control data record is not correct.
16#80B5 Configuration control parameters not assigned
16#80E2 Data record was transferred in the wrong OB context. The data record must be transferred in the startup
OB.
S7-1200 Programmable controller
152 System Manual, V4.4 11/2019, AS5E02486680-AN

Device configuration

6.4 Configuration control/

Error code Meaning
16#80B0 Block type (byte 2) of control data record is not equal to 196.
16#80B8 Parameter error; module signals invalid parameters, for example:

® The control data record attempts to modify the configuration of a communication module or a
communication annex card. The real configuration for communication modules and a
communication annex card must equal the STEP 7 configuration.

® The assigned value for an unconfigured slot in the STEP 7 project is not equal to 255.
® The assigned value for a configured slot is out of range.

® The assigned configuration has an "internal" empty slot, for example, slot n is assigned and slot n-1
is not assigned.

6.4.3 Example of configuration control

This example describes a configuration consisting of a CPU and three I/O modules.The module
at slot 3 is not present in the first actual installation, so you use configuration control to "hide"
it.

In the second installation, the application includes the module that was initially hidden but now

includes it in the last slot. A modified control data record provides the information about the slot
assignments of the modules.

Example: Actual installation with configured but unused module

The device configuration contains all modules that can be present in an actual installation
(maximum configuration). In this case, the module that is in slot 3 in the device configuration is
not present in the real installation.

SACAMNERS

Figure 6-1 Device configuration of maximum installation with three signal modules

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 153

Device configuration

6.4 Configuration control/

154

»SJEMENS

Figure 6-2 Actual installation with module configured in slot 3 absent, and module configured for slot
4 in actual slot 3

To indicate the absence of the missing module, you must configure slot 3 in the control data

record with 0.

ControlDataRecord
| Name | Data type |5t&rt value |Comment

1 <@ = Static
2 <0 = ¥ ConfigControl Struct g ||
3 |41 s Block_length USInt 16 Length of control data record, including header
4 |0 = Block_ID Usint 196 Data record number
5 |41 s Version Usint 5
6 |« s Subversion USInt 0
7 |40 s Slot_1 Usint 255 Assignment for CPU annexcardiActual annexca..
8 |1 s Slot_2 Usint 2 Configured slot 2 | Assigned “real” slot
9 |40 s Slot_3 Usint] Configured slot 3 [Assigned “real” slot
10 |41 s Slot_4 Usint 3 Configured slot 4 | Assigned “real” slot
11 |41 s Slot 5 Usint 255 Configured slot 5/ Assigned “real” slot
12 |41 s Slot_& Usint 255 Configured slot 6 1 Assigned “real” slot
13 |41 s Slot_7 Usint 255 Configured slot 7/ Assigned “real” slot
14 |4 s Slot_8 Usint 255 Configured slot 8 | Assigned “real” slot
15 |40 s Slot 9 Usint 255 Configured slot 9/ Assigned “real” slot
16 |41 s Slot_101 Usint 255 Configured slot 101 [Assigned “real” slot
17 |41 s Slot_102 Usint 255 Configured slot 102 | Assigned “real” slot
18 l-am s Slot 103 Usint 255 Configured slot 103 | Assianed "real” slot

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN

Device configuration

6.4 Configuration contro/

Example: Actual installation with module subsequently added to a different slot

In the second example, the module in slot 3 of the device configuration is present in the actual
installation but is in slot 4.

SIMATIC
7-1200

Figure 6-3 Device configuration compared to actual installation with modules in slots 3 and 4 swapped

To correlate the device configuration to the actual installation, edit the control data record to
assign the modules to the correct slot positions.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 155

Device configuration

6.5 Changing a device

6.5

156

ControlDataRecord

Marme
4l - Static

= B = I L o

dapapdblrabbbrrlgl

Changing a

<0 = ~ ConfigControl

Block_length
Block_ID
Version
Subverzion
slot_1
Slot_2
slot_3
Slot_4
slot_s
slot 6
slot_7
Slot 8
slot_9
Slot_101
Slot_102
Slot_103

device

Data type

Struct
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint
USint

start value

[T S N % T S S 5 T T I N W1 Y S % I S = I]

[T
(=]

Comment

Length of control data recerd, including header

Data record number

Assignment for CPU annex card/Actual annexcard
Configured slot 2/ Assigned “real” slot
Configured slot 3 [Assigned "real” slot
Configured slot 4 [Assigned “real” slot
Configured slot 5 [Assigned "real” slot
Configured slot 6 [Assigned “real” slot
Configured slot 7 [Assigned "real” slot
Configured slot 8 [Assigned “real” slot
Configured slot 9 [Assigned "real” slot
Configured slot 101 [Assigned “real” slot
Configured slot 102 [Assigned "real” slot
Configured slot 103 | Assigned "real” slot

You can change the device type of a configured CPU or module. From Device configuration,
right-click the device and select "Change device" from the context menu. From the dialog,
navigate to and select the CPU or module that you want to replace. The Change device dialog
shows you compatibility information between the two devices.

For considerations on changing devices between different CPU versions, refer to Exchanging

a V3.0 CPU for a V4.x CPU (Page 1501).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.6 Configuring the operation of the CPU

6.6 Configuring the operation of the CPU

6.6.1 Overview

To configure the operational parameters for the CPU, select the CPU in the Device view (blue
outline around whole CPU), and use the "Properties" tab of the inspector window.

H Properties |Yi4Info | % Diagnostics |

General

Table 6-2 CPU properties

b PROFINET interface [X1]

CONNeCTion reseunces

10 tags ' System constants . Taxts

General

e Project Information

LT

¥ High speed counters (H5C)

¥ Pulse genemators (FIOIPRAL Mames |PLC 1
FHrup Authar: |teesl
e . Comment: ~]
Communication lced
System and clock memcny L

b Websener '1 1
Userinterface Isnguages. L —
Time of day " Slot: |1

b Frotection Fackc |Q

Configuration control

Catalog information

Oreereiew af addresses

Shar designation: | CPU 1215 DODODC

Property Description
PROFINET interface Sets the IP address for the CPU and time synchronization
DI, DO, and Al Configures the behavior of the local (onboard) digital and analog 1/O (for example, digital input

filter times and digital output reaction to a CPU stop).

High-speed counters
(Page 515) and pulse gener-
ators (Page 457)

Enables and configures the high-speed counters (HSC) and the pulse generators used for
pulse-train operations (PTO) and pulse-width modulation (PWM)

When you configure the outputs of the CPU or signal board as pulse generators (for use with
the PWM or motion control instructions), the corresponding output addresses are removed
from the Q memory and cannot be used for other purposes in your user program. If your user
program writes a value to an output used as a pulse generator, the CPU does not write that
value to the physical output.

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN 157

Device configuration

6.6 Configuring the operation of the CPU

Property Description

Startup (Page 83) Startup after POWER ON: Selects the behavior of the CPU following an off-to-on transition,
such as to start in STOP mode or to go to RUN mode after a warm restart

Supported hardware compatibility: Configures the substitution strategy for all system compo-
nents (SM, SB, CM, CP and CPU):

® Allow acceptable substitute
e Allow any substitute (default)

Each module internally contains substitution compatibility requirements based on the number
of /0, electrical compatibility, and other corresponding points of comparison. For example, a
16-channel SM could be an acceptable substitute for an 8-channel SM, but an 8-channel SM
could not be an acceptable substitute for a 16-channel SM. If you select "Allow acceptable

substitute”, STEP 7 enforces the substitution rules; otherwise, STEP 7 allows any substitution.

Parameter assignment time for distributed 1/0: Configures a maximum amount of time (default:
60000 ms) for the distributed I/O to be brought online. (The CMs and CPs receive power and
communication parameters from the CPU during startup. This assignment time allows time for
the 1/0 connected to the CM or CP to be brought online.)

The CPU goes to RUN as soon as the distributed 1/O is online, regardless of the assignment
time. If the distributed 1/0 has not been brought online within this time, the CPU still goes to
RUN--without the distributed 1/O.

Note: If your configuration uses a CM 1243-5 (PROFIBUS master), do not set this parameter
below 15 seconds (15000 ms) to ensure that the module can be brought online.

OBs should be interruptible: Configures whether OB execution (for all OBs) in the CPU
is interruptible or non-interruptible (Page 98)

Cycle (Page 101) Defines a maximum cycle time or a fixed minimum cycle time
Communication load Allocates a percentage of the CPU time to be dedicated to communication tasks
System and clock memory | Enables a byte for "system memory" functions and enables a byte for "clock memory" functions
(Page 105) (where each bit toggles on and off at a predefined frequency)
Web server (Page 939) Enables and configures the Web server feature
Time of day Selects the time zone and configures daylight saving time
Multilingual support Assigns a project language for the Web server to use for displaying diagnostic buffer entry texts
(Page 161) for each of the possible Web server user interface display languages.
Protection (Page 192) Sets the read/write protection and passwords for accessing the CPU
Configuration control Enables configuring a master device configuration that you can control for different actual
(Page 146) device configurations
Connection resources Provides a summary of the communication connection resources that are available for the CPU
(Page 740) and the number of connection resources that have been configured
Overview of addresses Provides a summary of the /O addresses that have been configured for the CPU
6.6.2 Configuring digital input filter times

The digital input filters protect your program from responding to unwanted fast changes in the
input signals, as may result from switch contact bounce or electrical noise. The default filter time
of 6.4 ms blocks unwanted transitions from typical mechanical contacts. Different points in your
application can require shorter filter times to detect and respond to inputs from fast sensors, or
longer filter times to block slow contact bounce or longer impulse noise.

An input filter time of 6.4 ms means that a single signal change, from ‘0’ to ‘1’ or from ‘1’ to ‘0’,
must continue for approximately 6.4 ms to be detected, and a single high or low pulse shorter

S7-1200 Programmable controller
158 System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.6 Configuring the operation of the CPU

than approximately 6.4 ms is not detected. If an input signal switches between ‘0’ and ‘1’ more
rapidly than the filter time, the input point value can change in the user program when the
accumulated duration of new value pulses over old value pulses exceeds the filter time.

The digital input filter works this way:

e Whena"1"is input, it counts up, stopping at the filter time. The image register point changes
from "0" to "1" when the count reaches the filter time.

e When a"0"is input, it counts down, stopping at "0". The image register point changes from
"1" to "0" when the count reaches "0".

e |[ftheinputis changing back and forth, the counter will count up some and count down some.
The image register will change when the net accumulation of counts reaches either the filter
time or "0".

® A rapidly-changing signal with more "0’s" than "1’s" will eventually go to "0", and if there are
more "1's" than "0’s", the image register will eventually change to "1".

"G roperties [T info 0] % Diagnostics
p

Genetal ;Iur..q. | Teats

e
— | [Digealinpass

v Channadd

INpUE Bers. | & & Frllize

7] Ematde g e dgpe dutectior

128
[Emabie fatkng sdge detgenel.

Each input point has a single filter configuration that applies to all uses: process inputs,
interrupts, pulse catch, and HSC inputs. To configure input filter times, select "Digital Inputs".

The default filter time for the digital inputs is 6.4 ms. You can select a filter time from the Input
filters drop-down list. Valid filter times range from 0.1 us to 20.0 ms.

A\ WARNING

Risks with changes to filter time for digital input channel

If you change the filter time for a digital input channel from a previous setting, a new "0" level
input value may need to stay at "0" for up to 20.0 ms before the filter becomes fully responsive
to new inputs. During this time, short "0" pulse events of duration less than 20.0 ms may not
be detected or counted.

This changing of filter times can result in unexpected machine or process operation, which
may cause death or serious injury to personnel, and/or damage to equipment.

To ensure that a new filter time goes immediately into effect, a power cycle of the CPU must
be applied.

Configuring filter times for digital inputs used as HSCs

For inputs that you use as high-speed counters (HSCs), change the input filter time to an
appropriate value to avoid missing counts.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 159

Device configuration

6.6 Configuring the operation of the CPU

Siemens recommends the following settings:

Type of HSC Recommended input filter time
1 MHz 0.1 microseconds
100 kHz 0.8 microseconds
30 kHz 3.2 microseconds
6.6.3 Pulse catch

The S7-1200 CPU provides a pulse catch feature for digital input points. The pulse catch
feature allows you to capture high-going pulses or low-going pulses that are of such a short
duration that they would not always be seen when the CPU reads the digital inputs at the
beginning of the scan cycle.

When you enable pulse catch for an input, a change in state of the input is latched and held until
the next input cycle update. This ensures that a pulse that lasts for a short period of time will be
caught and held until the CPU reads the inputs.

The figures below show the basic operation of the S7-1200 CPU with and without pulse catch

enabled:
Scan cycle ‘ Next scan cycle
T Input update T Input update
1 | I 1

Physical input
(for example, 10.0)

Output from pulse catch | The CPU catches this pulse on the physical input

Enabled

Process Image Update 10.0

Scan cycle ‘ Next scan cycle

Physical input
(for example, 10.0)

| The CPU misses this pulse because the input
1 turned on and off before the CPU updated the

,_| | process-image input register

T Input update T Input update
1 1
T T
1 1
1
1
Output from pulse catch
1
1

Disabled

1 1
1 1
1 1
Process Image Update 10.0 _t !

Note

Because the pulse catch function operates on the input after it passes through the input filter,
you must adjust the input filter time so that the filter does not remove the pulse.

The figure below shows a block diagram of the digital input circuit:

S7-1200 Programmable controller
160 System Manual, V4.4 11/2019, ASE02486680-AN

Device configuration

6.7 Configuring multilingual support

® > Optical Digital input N Pulse ! '
isolation g filter catch —»! Inputto CPU |

External

digital input Pulse catch
enable

The figure below shows the response of an enabled pulse catch function to various input
conditions. If you have more than one pulse in a given scan, only the first pulse is read. If you
have multiple pulses in a given scan, you should use the rising/falling edge interrupt events:

Scan cycle ‘ Next scan cycle

T Input update T Input update
Input to pulse catch —T1
1
1

Output from pulse catch ——

I
]
|
Input to pulse catch L
I

I

: LT

Output from pulse catch :—|—|
Input to pulse catch

I I
I
: L T
I I
T I

Output from pulse catch 1 J

6.7 Configuring multilingual support

The Multilingual support settings allow you to assign one of two project languages for each user
interface language for the S7-1200 Web server (Page 939). You can also configure no project
language for a user interface language.

What is a project language?

The project language is the language that the TIA Portal uses to display user-defined project
texts as network comments and block comments.

You select project languages in the TIA Portal from the Tools > Project languages menu
command for the selected project in the project tree.

You can then configure user texts such as network comments and block comments in each
project language from the Tools > Project texts menu command. Then when you change the
TIA Portal user interface language, the network comments, block comments, and other
multilingual project texts display in the corresponding project language. You set the TIA Portal
user interface language from the Options > Settings project language menu command.

Project languages and project texts are also configurable from the Languages & resources
node of the project tree.

The Web server can use one or two of the STEP 7 project languages for the display of
diagnostic buffer messages.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 161

Device configuration

6.8 Configuring the parameters of the modules

Project language correspondence to user interface language in the Web server

The Web server supports the same user interface languages as the TIA Portal; however, it only
supports up to two project languages. You can configure the Web server to use one of two
project languages for diagnostic buffer text entries depending on the user interface language
of the Web server. You configure these settings in the "Multilingual support" properties in the
device configuration of the CPU. (Network comments and block comments and other
multilingual texts are not visible from the Web server.)

v W ¥ ¥ ¥V W

|3 Properties {74 Info ”L Diagnostics |
| General | 10tags | System constants | Texts |
General
- Multilingual support
PROFINET interface [X1] 9 i
DI14iDQ 10 Project languages for download to the PLC
Al 218G 2
High speed counters (HSC) Assign project languages to the evailable languages on the CPU display and Web
Pulse generators (FTO/PWI SRIVRL:
Startup Mote:

-

Cycle
Communication load
System and clock memory
Web server
General
Automatic update
User management
Viatch tables

-

Userdefined pages
Entry page
Overview of interfaces
Multilingua| suppart
Time of day

Protection

Configuration control
Connection resources
Overview of addresses

The project languages shown below will be downloaded to the PLC. The maximum of
downloadable languages is limited by the CPU.

Praject languages are configured under Languages & Resources ->Project languages.

Assign project language
German (Germany)

English (United States)|

English (United States)
Naone

English (United States)
English (United States)

User interface languages
German

English

French

Spanish

Italian

Chinese (simplified)

In the Multilingual support properties, the user interface languages on the right are not editable.
They are the pre-defined languages that are available for both the TIA Portal and for the Web
server user interfaces. The "Assign project language" setting is configurable and can be one of
two of your configured project languages, or it can be "None". Because the S7-1200 CPU only
supports two project languages, you cannot configure the project language to be the same as
the user interface language for all of the supported user interface languages.

In the configuration below, the Web server displays diagnostic buffer entries (Page 958) in

German when the Web server user interface is German, displays no texts for diagnostic buffer
events when the Web server user interface is Spanish, and displays diagnostic buffer entries
in English for all other languages.

6.8

Configuring the parameters of the modules

To configure the operational parameters for the modules, select the module in the Device view
and use the "Properties" tab of the inspector window to configure the parameters for the
module.

162

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.8 Configuring the parameters of the modules

Configuring a signal module (SM) or a signal board (SB)

The device configuration for signal modules and signal boards provides the means to configure

the following:

e Digital I/O: You can configure inputs for rising-edge detection or falling-edge detection

(associating each with an event and hardware interrupt) or for "pulse catch" (to stay on after
a momentary pulse) through the next update of the input process image. Outputs can use
a freeze or substitute value.

Analog I/O: For individual inputs, configure parameters, such as measurement type (voltage
or current), range and smoothing, and to enable underflow or overflow diagnostics. Analog
outputs provide parameters such as output type (voltage or current) and for diagnostics,
such as short circuit (for voltage outputs) or upper/lower limit diagnostics. You do not
configure ranges of analog inputs and outputs in engineering units on the Properties dialog.
You must handle this in your program logic as described in the topic "Processing of analog
values (Page 114)".

I/0 addresses: You configure the start address for the set of inputs and outputs of the
module. You can also assign the inputs and outputs to a process image partition (PIPO,
PIP1, PIP2, PIP3, PIP4) or to automatically update, or to use no process image partition.
See 'Execution of the user program' (Page 79) for an explanation of the process image and
process image partitions.

4 Propertles [MiInfa | %/ Diagnostics |
General |

General |
SR VD addresses

w Dugeal sputs
Chanrell Input addresses
Chanrell
= [ugeal ourputs seamaddress: |4
Channeld
Chaneell
V0 addresses

Hardware identfier
Y Dutput addoesses

Sxart address: |4

Configuring a communication interface (CM, CP or CB)

Depending on the type of communication interface, you configure the parameters for the

network.

O Properties Y lnfu | B Diagnostics |

Ganeral

* General .
FROFIBLES address

+ PRCFIBUS interlace 013
aeneral Interface netwaorked with
FROFEUS address
Dperating mode Subret | Hornenworked

Hardwane idencifies Add ree subnat

Parameters

Address; 2
Highest address

Trarsmission speed:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

163

Device configuration

6.9 Configuring the CPU for communication

6.9

Configuring the CPU for communication

The S7-1200 is designed to solve your communications and networking needs by supporting
not only the simplest of networks but also supporting more complex networks. The S7-1200
also provides tools that allow you to communicate with other devices, such as printers and
weigh scales which use their own communications protocols.

Project] > Devices & networks - X

& Topology view

ey Merwork 1] Connections

|th Networkview |[j Device view

TH Qs

-

Use the "Network view" of Device configuration to
create the network connections between the devi-
ces in your project. After creating the network con-
nection, use the "Properties" tab of the inspector
window to configure the parameters of the network.

Refer to 'Creating a network connection"

A1 PLC_2 ; X
CPU 1214C FUABTIC (Page 745) for further information.
| PNAE_1 §
PROFINET intwrivca 1 [Wodubal | S properties [Pilinfo [& Diagnastics | In the Properties window, select the "Ethernet ad-
| Gemeral [W0tags | Tests |

Genersl

Ethemet addresses

Ethemer addresses
Time synchronisatian
Oparapng mods

* Adwanced apoons
Hardware weraifier

1P protocel

PROFINET

Interface netewoied with

Subnet | Mot networked

Add new subnet

(&) SetiP nddress in the project
IPaddres= | 197 . 168 2 L]
Bubnetmazk | 255, 255 355 0

[Use routar

l':"_: SEt IF address using & diflerent rmezhod

[St FROFINET dhervace niame iising & diflerent
meth:

[l Genierate FACFINET device name automatcally

FROFINET device name | plc_1

Canvened name: | plodidoed

Cievice member |0

dresses" configuration entry. STEP 7 displays the
Ethernet address configuration dialog, which asso-
ciates the software project with the IP address of
the CPU that will receive that project.

Note: The S7-1200 CPU does not have a pre-con-
figured IP address. You must manually assign an IP
address for the CPU.

Refer to 'Assigning Internet Protocol (IP) address-
es' (Page 748) for further information.

164

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Device configuration

6.10 Time synchronization

| Properties

General

Cammacion paemeter S
BLack paraETer

| Configuration

General

[End pownt

wnerdace

Addrens
Connechon iype

Cannacuon dey

Address detaily

THaP (aSCmy
TSAF IO

Connection parameter

U 214G DODODC, 1 =

[

| % Dhagnostics

2

1%

21868001

Figeny TP

AL 1k

@) £ Aabiih ety

COnneChoen

LT

CFU 1 21AC DODORC, I =

192114004

- TR

For the TCP, ISO-on-TCP, and UDP Ethernet pro-
tocols, use the "Properties" of the instruction
(TSEND_C, TRCV_C, or TCON) to configure the
"Local/Partner" connections.

The figure shows the "Connection properties” of the
"Configuration tab" for an ISO-on-TCP connection.
Refer to "Configuring the Local/Partner connection
path' (Page 745) for further information.

Untended downlosd te device

Lot
el

Flash LEG

Canlgartd Booen) sodes of L1

EaLE B

O 14 0D

et
L

Tt

o

Ay
LA R

o Ut 8 001 1l AR

B

ACCE B bR 50

it e

After completing the configuration, download the
project to the CPU. All IP addresses are configured
when you download the project.

Refer to I'Testing the PROFINET network'"

(Page 756) for further information.

6.10

S7-1200 Programmable controller

Note

To make a connection to your CPU, your network interface card (NIC) and the CPU must be on
the same class of network and on the same subnet. You can either set up your network
interface card to match the default IP address of the CPU, or you can change the IP address
of the CPU to match the network class and subnet of your network interface card.

Refer to "Assigning Internet Protocol (IP) addresses" (Page 748) for information about how to

accomplish this.

Time synchronization

The objective of time synchronization of the time-of-day clocks is to have one master clock that
synchronizes all other local clocks. The master clock synchronizes the local clocks initially and
also periodically re-synchronizes the clocks to avoid the effects of drift over time.

System Manual, V4.4 11/2019, ASE02486680-AN

165

Device configuration

6. 10 Time synchronization

In the case of the S7-1200 and its local base components, only the CPU and some of the CP
modules have time-of-day clocks that might need to be synchronized. You can configure the
CPU’s time-of-day clock to be synchronized to an external master clock. The external master
clock might supply the time of day using an NTP server or through a CP in the local rack of the
S7-1200 that is connected to a SCADA system that includes a master clock.

Refer to S7-1200 CPs (https://support.industry.siemens.com/cs/us/en/ps) at Siemens Industry
Online Support, Product Support for further information on all S7-1200 CPs that support the
Time sychronization function.

Setting the time-of-day clock

166

There are three ways to set the time-of-day clock in the S7-1200 CPU:
® Using the NTP server (Page 759)

e Using STEP 7

® From the user program

e Using an HMI panel

You configure time synchronization of the CP modules to the CPU’s clock by selecting the
"CPU synchronizes the modules of the device." check box as shown:

| & Properties *ilinfo 3| % Diagnostics

General ! I0 tags || System constants | Texts |

b General

T ir
Time synchronization
~ PROFIMNET interface [X1] : ¥

General
Ethernet addresses [Enable tme synchronization vis NTP server
Time synchrenization

Operatng mode

IF addresses

» Advanced options Server): | 192 . 168 . 0 10
Web server access Server2: |0 i} 0 o
Hardware identifier Srer® | o o .o a
» DI14IDQ 10 B
i il Serverd: | o o .0 a
b AL ZIAD 2 |
¥ High speed counters (HSC) ’ Update interval: |10 sec
¥ Pulse generators (FTOIPWIWE
St ’:‘ CPU synchranizes the modules of the device,

Cycle

By default, neither time synchronization using the NTP server nor time synchronization of the
CP clocks to the CPU'’s clock is enabled.

You configure time synchronization of the CPU’s clock and time synchronization of the CP
clocks independently. Consequently, you can enable time synchronization of the CP clocks by
the CPU when the CPU’s clock is set by any of the above-mentioned methods.

You can select the update interval using the NTP server. The update interval of the NTP server
is set to 10 seconds by default.

When you activate time synchronization in a module, STEP 7 prompts you to select the "CPU
synchronizes the modules of the device." if you have not already selected the check box in the
CPU’s "Time synchronization" dialog. STEP 7 also warns you if you configured more than one

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

https://support.industry.siemens.com/cs/us/en/ps

Device configuration

6.10 Time synchronization

master clock source for time synchronization (for example, you activated time synchronization
on more than one CP or on both the CPU and a module).

Note

Activating time synchronization on a CP causes the CP to set the CPU’s clock.

If you select "CPU synchronizes the modules of the device" in the CPU "Time synchronization
dialog, then the CPU is the time master. The CP modules then synchronize to the CPU’s clock.

Note

Only configure one time source for the CPU. Receiving time synchronizations for the CPU from
more than one source (NTP server or CP module, for example) could cause conflicting time
updates. Time synchronizations from multiple sources could adversely affect instructions and
events based on time of day.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 167

Device configuration

6. 10 Time synchronization

S7-1200 Programmable controller
168 System Manual, V4.4 11/2019, ASE02486680-AN

Programming concepts

71 Guidelines for designing a PLC system

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow the
directives of your own company's procedures and the accepted practices of your own training
and location.

Table 7-1 Guidelines for designing a PLC system

Recommended steps

Tasks

Partition your process
or machine

Divide your process or machine into sections that have a level of independence from each other.
These partitions determine the boundaries between controllers and influence the functional de-
scription specifications and the assignment of resources.

Create the functional
specifications

Write the descriptions of operation for each section of the process or machine, such as the I/O
points, the functional description of the operation, the states that must be achieved before allowing
action for each actuator (such as a solenoid, a motor, or a drive), a description of the operator
interface, and any interfaces with other sections of the process or machine.

Design the safety cir-
cuits

Identify any equipment that might require hard-wired logic for safety. Remember that control devi-
ces can fail in an unsafe manner, which can produce unexpected startup or change in the operation
of machinery. Where unexpected or incorrect operation of the machinery could result in physical
injury to people or significant property damage, consider the implementation of electromechanical
overrides (which operate independently of the PLC) to prevent unsafe operations. The following
tasks should be included in the design of safety circuits:

e |dentify any improper or unexpected operation of actuators that could be hazardous.

e |dentify the conditions that would assure the operation is not hazardous, and determine how to
detect these conditions independently of the PLC.

e |dentify how the PLC affects the process when power is applied and removed, and also identify
how and when errors are detected. Use this information only for designing the normal and
expected abnormal operation. You should not rely on this "best case" scenario for safety
purposes.

® Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

® Provide the appropriate status information from the independent circuits to the PLC so that the
program and any operator interfaces have necessary information.

e |dentify any other safety-related requirements for safe operation of the process.

Plan system security

Determine what level of protection (Page 192) you require for access to your process. You can
password-protect CPUs and program blocks from unauthorized access.

Specify the operator
stations

Based on the requirements of the functional specifications, create the following drawings of the
operator stations:

e Overview drawing that shows the location of each operator station in relation to the process or
machine.

® Mechanical layout drawing of the devices for the operator station, such as display, switches, and
lights.

® Electrical drawings with the associated 1/0 of the PLC and signal modules.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 169

Programming concepts

7.2 Structuring your user program

Recommended steps

Tasks

Create the configura-
tion drawings

Based on the requirements of the functional specification, create configuration drawings of the
control equipment:

e Overview drawing that shows the location of each PLC in relation to the process or machine.

® Mechanical layout drawing of each PLC and any I/O modules, including any cabinets and other
equipment.

e Electrical drawings for each PLC and any 1/O modules, including the device model numbers,
communications addresses, and 1/O addresses.

Create a list of symbolic
names

Create a list of symbolic names for the absolute addresses. Include not only the physical I/O signals,
but also the other elements (such as tag names) to be used in your program.

7.2 Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:

An organization block (OB) responds to a specific event in the CPU and can interrupt the
execution of the user program. The default for the cyclic execution of the user program (OB
1) provides the base structure for your user program. If you include other OBs in your
program, these OBs interrupt the execution of OB 1. The other OBs perform specific
functions, such as for startup tasks, for handling interrupts and errors, or for executing
specific program code at specific time intervals.

A function block (FB) is a subroutine that is executed when called from another code block
(OB, FB, or FC). The calling block passes parameters to the FB and also identifies a specific
data block (DB) that stores the data for the specific call or instance of that FB. Changing the
instance DB allows a generic FB to control the operation of a set of devices. For example,
one FB can control several pumps or valves, with different instance DBs containing the
specific operational parameters for each pump or valve.

A function (FC) is a subroutine that is executed when called from another code block (OB,
FB, or FC). The FC does not have an associated instance DB. The calling block passes
parameters to the FC. The output values from the FC must be written to a memory address
or to a global DB.

Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:

170

Alinear program executes all of the instructions for your automation tasks in sequence, one
after the other. Typically, the linear program puts all of the program instructions into the OB
for the cyclic execution of the program (OB 1).

A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides the
program segment for each subordinate task. You structure your program by calling one of
the code blocks from another block.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.3 Using blocks fo structure your program

Linear structure: Modular structure:
—
N < FC 1
«— «—

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a number
of benefits:

® You can create reusable blocks of code for standard tasks, such as for controlling a pump
or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

e When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The modular
components not only help to standardize the program design, but can also help to make
updating or modifying the program code quicker and easier.

® (Creating modular components simplifies the debugging of your program. By structuring the
complete program as a set of modular program segments, you can test the functionality of
each code block as it is developed.

e Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

7.3 Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You then
structure your program by having other code blocks call these reusable modules. The calling
block passes device-specific parameters to the called block.

When a code block calls another code block, the CPU executes the program code in the called
block. After execution of the called block is complete, the CPU resumes the execution of the

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 171

Programming concepts

7.3 Using blocks fo structure your program

7.3.1

172

calling block. Processing continues with execution of the instruction that follows after the block
call.

®
OB, FB, FC OB, FB, FC

° l ;

()

Calling block
Called (or interrupting) block
Program execution

Instruction or event that initiates the execution of
another block

Program execution

l '\V Block end (returns to calling block)
/\/\/\ .

You can nest the block calls for a more modular structure. In the following example, the nesting
depth is 3: the program cycle OB plus 3 layers of calls to code blocks.

®e 0% ~*

® | ® | @® Start of cycle
e > R @ Nesting depth
OB 1 FB 1 FC 1
|DB
2 [1| FB1 []1]| Fc21
|oB |oB
> v
|) FC1 DB 1

Note: The maximum nesting depth is six. Safety programs use two nesting levels. The user program
therefore has a nesting depth of four in safety programs.

Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, causes the CPU to execute an OB. Some OBs have
predefined start events and behavior.

The program cycle OB contains your main program. You can include more than one program
cycle OB in your user program. During RUN mode, the program cycle OBs execute at the
lowest priority level and can be interrupted by all other event types. The startup OB does not
interrupt the program cycle OB because the CPU executes the startup OB before going to RUN
mode.

After finishing the processing of the program cycle OBs, the CPU immediately executes the
program cycle OBs again. This cyclic processing is the "normal" type of processing used for
programmable logic controllers. For many applications, the entire user program is located in a
single program cycle OB.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.3 Using blocks fto structure your program

You can create other OBs to perform specific functions, such as for handling interrupts and
errors, or for executing specific program code at specific time intervals. These OBs interrupt the
execution of the program cycle OBs.

Use the "Add new block" dialog to create new OBs in your user program.

Interrupt handling is al-
pame ways event-driven. When
: . such an event occurs, the
; A Frogrem cyele Langusge:] =1 CPU interrupts the execu-
. e 3 . s e B tion of the user program
| M Gl e (S and calls the OB that was

& Hardwan

Ft {3) Auspmaic

& e erer immemug configured to handle that
% o SR S event. After finishing the
e beiipnsiriens A pogm e 02 eecued el f-:-xecution of the interrupt-
e here oo :...E:T:dmc:mm:r::::w ing OB, the CPU resumes
ik et the execution of the user
#; & v merpolso program at the point of in-
Funciion et terruption.

& MCPostSeno

@

Data block

¥ | Additional information

| [Add new and zpen oK Cancel

The CPU determines the order for handling interrupt events by priority. You can assign multiple
interrupt events to the same priority class. For more information, refer to the topics on
organization blocks (Page 87) and execution of the user program (Page 79).

Creating additional OBs

You can create multiple OBs for your user program, even for the program cycle and startup OB
events. Use the "Add new block" dialog to create an OB and enter a name for your OB.

If you create multiple program cycle OBs for your user program, the CPU executes each
program cycle OB in numerical sequence, starting with the program cycle OB with the lowest
number (such as OB 1). For example: after the first program cycle OB (such as OB 1) finishes,
the CPU executes the program cycle OB with the next higher number.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 173

Programming concepts

7.3 Using blocks fo structure your program

Configuring the properties of an OB

You can modify the properties of an OB. For example, you can configure the OB number or
programming language.

General

General
General

Infareration
Time Hamps
Compdation Marne, Tirme delsy ecerp
Pribe ciwn

Constant name: OB Teme delay interrupt
Abtributes -

Type. (OB
Mumber: 20

Event class: Time delay mternupe

Language: LAD Tw
Process image part number

FIF: O

Note

Note that you can assign a process image part number to an OB that corresponds to PIPO,
PIP1, PIP2, PIP3, or PIP4. If you enter a number for the process image part number, the CPU
creates that process image partition. See the topic "Execution of the user program (Page 79)"
for an explanation of the process image partitions.

7.3.2 Function (FC)

A function (FC) is a code block that typically performs a specific operation on a set of input
values. The FC stores the results of this operation in memory locations. For example, use FCs
to perform standard and reusable operations (such as for mathematical calculations) or
technological functions (such as for individual controls using bit logic operations). An FC can
also be called several times at different points in a program. This reuse simplifies the
programming of frequently recurring tasks.

An FC does not have an associated instance data block (DB). The FC uses the local data stack
for the temporary data used to calculate the operation. The temporary data is not saved. To
store data permanently, assign the output value to a global memory location, such as M
memory or to a global DB.

S7-1200 Programmable controller
174 System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.3 Using blocks fo structure your program

7.3.3 Function block (FB)

A function block (FB) is a code block that uses an instance data block for its parameters and
static data. FBs have variable memory that is located in a data block (DB), or "instance" DB. The
instance DB provides a block of memory that is associated with that instance (or call) of the FB
and stores data after the FB finishes. You can associate different instance DBs with different
calls of the FB. The instance DBs allow you to use one generic FB to control multiple devices.
You structure your program by having one code block make a call to an FB and an instance DB.
The CPU then executes the program code in that FB, and stores the block parameters and the
static local data in the instance DB. When the execution of the FB finishes, the CPU returns to
the code block that called the FB. The instance DB retains the values for that instance of the FB.
These values are available to subsequent calls to the function block either in the same scan

cycle or other scan cycles.

Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be quickly
accessed from one scan to the next, each FB in your user program has one or more instance
DBs. When you call an FB, you also specify an instance DB that contains the block parameters
and the static local data for that call or "instance" of the FB. The instance DB maintains these
values after the FB finishes execution.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.

An FB stores the Input, Output, and InOut, and Static parameters in an instance DB.

You can also modify and download the function block interface in RUN mode (Page 1292).

Assigning the start value in the instance DB

The instance DB stores both a default value and a start value for each parameter. The start
value provides the value to be used when the FB is executed. The start value can then be
modified during the execution of your user program.

The FB interface also provides a "Default value" column that allows you to assign a new start
value for the parameter as you are writing the program code. This default value in the FB is then
transferred to the start value in the associated instance DB. If you do not assign a new start
value for a parameter in the FB interface, the default value from instance DB is copied to start
value.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 175

Programming concepts

7.3 Using blocks fo structure your program

Using a single FB with DBs

The following figure shows an OB that calls one FB three times, using a different data block for
each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices. Each
instance DB stores the data (such as speed, ramp-up time, and total operating time) for an
individual device.

DB 201
OB1
FB 22
FB 22, DB 201 ’%
FB 22, DB 202
FB 22, DB 203
DB 203

In this example, FB 22 controls three separate devices, with DB 201 storing the operational
data for the first device, DB 202 storing the operational data for the second device, and DB 203
storing the operational data for the third device.

734 Data block (DB)

You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB).

The data stored in a DB is not deleted when the execution of the associated code block comes
to an end. There are two types of DBs:

® A global DB stores data for the code blocks in your program. Any OB, FB, or FC can access
the data in a global DB.

® Aninstance DB stores the data for a specific FB. The structure of the data in an instance DB
reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The Temp
memory for the FB is not stored in the instance DB.)

Note

Although the instance DB reflects the data for a specific FB, any code block can access the
data in an instance DB.

You can also modify and download data blocks in RUN mode (Page 1292).

S7-1200 Programmable controller
176 System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.3 Using blocks fo structure your program

Read-only data blocks
You can configure a DB as being read-only:
1. Right-click the DB in the project navigator and select "Properties" from the context menu.
2. In the "Properties" dialog, select "Attributes".

3. Select the "Data block write-protected in the device" option and click "OK".

Optimized and standard data blocks

You can also configure a data block to be either standard or optimized. A standard DB is
compatible with STEP 7 Classic programming tools and the classic S7-300 and S7-400 CPUs.
Data blocks with optimized access have no fixed defined structure. The data elements contain
only a symbolic name in the declaration and no fixed address within the block. The CPU stores
the elements automatically in the available memory area of the block so that there are no gaps
in the memory. This makes for optimal use of the memory capacity.

To set optimized access for a data block, follow these steps:

1. Expand the program blocks folder in the STEP 7 project tree.

2. Right-click the data block and select "Properties" from the context menu.
3. For the attributes, select "Optimized block access".

Note that optimized block access is the default for new data blocks. If you deselect "Optimized
block access", the block uses standard access.

Note
Block access type for an FB and its instance DB

Be sure that if your FB setting is "Optimized block access" then the setting of the instance DB
for that FB is also "Optimized block access". Similarly if you have not selected "Optimized block
access" for the FB such that the FB is of type standard access, then be sure that the instance
DB is also standard, or not optimized block access.

If you do not have compatible block access types, then changes to the INJOUT parameter
values of the FB from an HMI during execution of the FB could be lost.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 177

Programming concepts

7.3 Using blocks fo structure your program

7.3.5

7.3.6

178

Creating reusable code blocks

Add now block X Use the "Add new block"
ks dialog under "Program
: blocks" in the Project navi-
Langusge: s - gator to create OBs, FBs,
2 .. FCs, and global DBs.
b f_::m:m When you create a code

block, you select the pro-
gramming language for the

Lo

Description
Function blocks are code blocks that store their values perranently in mstance data bocks, bIOCk You do not SeleCt a
Furction block 50 That thisy repiain svastable fter the block has been excited

language for a DB be-
cause it only stores data.

Selecting the "Add new
and open" check box (de-
fault) opens the code block
in the Project view.

¥

Function

Data block

mare

:)__.Flgi_d_wltlunal information

e — T
o] Add new and open oK cancel

You can store objects you want to reuse in libraries. For each project, there is a project library
that is connected to the project. In addition to the project library, you can create any number of
global libraries that can be used over several projects. Since the libraries are compatible with
each other, library elements can be copied and moved from one library to another.

Libraries are used, for example, to create templates for blocks that you first paste into the
project library and then further develop there. Finally, you copy the blocks from the project
library to a global library. You make the global library available to other colleagues working on
your project. They use the blocks and further adapt them to their individual requirements, where
necessary.

For details about library operations, refer to the STEP 7 online Help library topics.

Passing parameters to blocks

Function Blocks (FB) and Functions (FC) have three different interface types:
e IN

e IN/OUT

e OUT

FBs and FCs receive parameters through the IN and IN/OUT interface types. The blocks
process the parameters and return values to the caller through the IN/OUT and OUT interface
types.

The user program transfers parameters using one of two methods.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.3 Using blocks fo structure your program

Call-by-value

When the user program passes a parameter to a function as "call-by-value", the user program
copies the actual parameter value into the input parameter of the block for the IN interface type.
This operation requires additional memory for the copied value.

»My_int”
value: 31

When the user program calls the block, it copies the values.

Call-by-reference

When the user program passes a parameter to a function as "call-by-reference"”, the user
program references the address of the actual parameter for the IN/OUT interface type and does
not copy the value. This operation does not require additional memory.

"My_string"
value: 'test'

When the user program calls the block, it references the address of the actual parameters.

Note

Generally, use the IN/OUT interface type for structured tags (for example, ARRAY, STRUCT,
and STRING) in order to avoid increasing the required data memory unnecessarily.

Block optimization and passing parameters

The user program passes FC parameters as "call-by-value" for simple data types (for example,
INT, DINT, and REAL). It passes complex data types (for example, STRUCT, ARRAY, and
STRING) as "call-by-reference".

The user program normally passes FB parameters in the instance Data block (DB) associated
with the FB:

® The user program passes simple data types (for example, INT, DINT, and REAL) as "call-by-
value" by copying the parameters to/from the instance DB.

® The user program copies complex data types (for example, STRUCT, ARRAY, and
STRING) to and from the instance DB for IN and OUT parameter types.

® The user program passes complex data types as "call-by-reference" for the INJOUT
interface type.

DBs can be created as either "Optimized" or "Standard" (non-optimized). The optimized data
blocks are more compact than the non-optimized data blocks. Also, the ordering of the data

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 179

Programming concepts

7.3 Using blocks fo structure your program

elements within the DB is different for optimized versus non-optimized DBs. Refer to the
"Optimized blocks" section of the S7-Programming Guideline for S7-1200/1500, STEP 7 (TIA
Portal), 03/2014 (http://support.automation.siemens.com/WW/view/en/81318674) for a
discussion of optimized blocks.

You create FBs and FCs to process either optimized or non-optimized data. You can select the
"Optimized block access" check box as one of the attributes for the block. The user program
optimizes program blocks by default, and the program blocks expect data passed to the block
to be in the optimized format.

When the user program passes a complex parameter (for example, a STRUCT) to a function,
the system checks the optimization setting of the data block containing the structure and the
optimization setting of the program block. If you optimize both the data block and the function,
then the user program passes the STRUCT as a "call-by-reference". The same is true if you
select non-optimized for both the data block and the function.

However, if you make the function and data block optimization different (meaning that you
optimized one block and not the other block), the STRUCT must be converted to the format
expected by the function. For example, if you select non-optimized for the data block and
optimized for the function, then a STRUCT in the data block must be converted to an optimized
format before the function can process the STRUCT. The system does this conversion by
making a "copy" of the STRUCT and converting it to the optimized format that the function
expects.

In summary, when the user program passes a complex data type (for example, a STRUCT) to
afunction as an IN/OUT parameter, the function expects the user program to pass the STRUCT
as a "call-by-reference":

® [fyou select optimized or non-optimized for both the data block containing the STRUCT and
the function, the user program passes the data as "call-by-reference".

e [f you do not configure the data block and the function with the same optimization settings
(one is optimized and the other is non-optimized), the system must make a copy of the
STRUCT before passing it to the function. Because the system has to make this copy of the
structure, this converts the "call-by-reference", effectively, into a "call-by-value".

Effect of optimization settings on user programs

180

The copying of the parameter can cause an issue in a user program if an HMI or interrupt OB
modifies elements of the structure. For example, there is an INJOUT parameter of a function
(normally passed as "call-by-reference"), but the optimization settings of the data block and
function are different:

1. When the user program is ready to call the function, the system must make a "copy" of the
structure to change the format of the data to match the function.

2. The user program calls the function with a reference to the "copy" of the structure.

3. Aninterrupt OB occurs while the function is executing, and the interrupt OB changes a value
in the original structure.

4. The function completes and, since the structure is an IN/OUT parameter, the system copies
the values back to the original structure in the original format.

The effect of making the copy of the structure to change the format is that the data written by
the interrupt OB is lost. The same can happen when writing a value with an HMI. The HMI can
interrupt the user program and write a value in the same manner as an interrupt OB.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

http://support.automation.siemens.com/WW/view/en/81318674

Programming concepfts

7.4 Understanding data consistency

There are multiple ways to correct this issue:

® The best solution for this this issue is to match the optimization settings of the program block
and the data block when using complex data types (for example, a STRUCT). This ensures
that the user program always passes the parameters as "call-by-reference".

e Another solution is that an interrupt OB or HMI does not directly modify an element in the
structure. The OB or HMI can modify another variable, and then you can copy this variable
into the structure at a specific point in the user program.

7.4 Understanding data consistency

The CPU maintains the data consistency for all of the elementary data types (such as Words
or DWords) and all of the system-defined structures (for example, IEC_TIMERS or DTL). The
reading or writing of the value cannot be interrupted. (For example, the CPU protects the
access to a DWord value until the four bytes of the DWord have been read or written.) To
ensure that the program cycle OBs and the interrupt OBs cannot write to the same memory
location at the same time, the CPU does not execute an interrupt OB until the read or write
operation in the program cycle OB has been completed.

If your user program shares multiple values in memory between a program cycle OB and an
interrupt OB, your user program must also ensure that these values are modified or read
consistently. You can use the DIS_AIRT (disable alarm interrupt) and EN_AIRT (enable alarm
interrupt) instructions in your program cycle OB to protect any access to the shared values.

e Insert a DIS_AIRT instruction in the code block to ensure that an interrupt OB cannot be
executed during the read or write operation.

® Insert the instructions that read or write the values that could be altered by an interrupt OB.

¢ Insertan EN_AIRT instruction at the end of the sequence to cancel the DIS_AIRT and allow
the execution of the interrupt OB.

A communication request from an HMI device or another CPU can also interrupt execution of
the program cycle OB. The communication requests can also cause problems with data
consistency. The CPU ensures that the elementary data types are always read and written
consistently by the user program instructions. Because the user program is interrupted
periodically by communications, it is not possible to guarantee that multiple values in the CPU
will all be updated at the same time by the HMI. For example, the values displayed on a given
HMI screen could be from different scan cycles of the CPU.

The PtP (Point-to-Point) instructions, PROFINET instructions (such as TSEND_C and
TRCV_C), PROFINET Distributed 1/O instructions (Page 360), and PROFIBUS Distributed 1/0O
Instructions (Page 360) transfer buffers of data that could be interrupted. Ensure the data
consistency for the buffers of data by avoiding any read or write operation to the buffers in both
the program cycle OB and an interrupt OB. If it is necessary to modify the buffer values for these
instructions in an interrupt OB, use a DIS_AIRT instruction to delay any interruption (an

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 181

Programming concepts

7.5 Programming language

interrupt OB or a communication interrupt from an HMI or another CPU) until an EN_AIRT
instruction is executed.

Note

The use of the DIS_AIRT instruction delays the processing of interrupt OBs until the EN_AIRT
instruction is executed, affecting the interrupt latency (time from an event to the time when the
interrupt OB is executed) of your user program.

7.5 Programming language

STEP 7 provides the following standard programming languages for S7-1200:

e | AD (ladder logic) is a graphical programming language. The representation is based on
circuit diagrams (Page 182).

e FBD (Function Block Diagram) is a programming language that is based on the graphical
logic symbols used in Boolean algebra (Page 183).

e SCL (structured control language) is a text-based, high-level programming language
(Page 183).

When you create a code block, you select the programming language to be used by that block.

Your user program can utilize code blocks created in any or all of the programming languages.

7.5.1 Ladder logic (LAD)

The elements of a circuit diagram, such as normally closed and normally open contacts, and
coils are linked to form networks.

X

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.

S7-1200 Programmable controller
182 System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.5 Programming language

STEP 7 does not limit the number of instructions (rows and columns) in a LAD network.

Note

Every LAD network must terminate with a coil or a box instruction.

Consider the following rules when creating a LAD network:

® You cannot create a branch that could result in a power flow in the reverse direction.

A B Cc D 4
| | | | | | | | (
[|1 |1 ! \)
E F
| | >< |
[[
-
H G
| | II

A B C Z
e
I I ! \)

7.5.2 Function Block Diagram (FBD)
Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

- To create the logic for complex operations,
"Star — & insert parallel branches between the boxes.

“On" — sk —_— "On"
"Stop" =0 sk —_— _—

Mathematical functions and other complex functions can be represented directly in conjunction
with the logic boxes.

STEP 7 does not limit the number of instructions (rows and columns) in an FBD network.

7.5.3 SCL

Structured Control Language (SCL) is a high-level, PASCAL-based programming language for
the SIMATIC S7 CPUs. SCL supports the block structure of STEP 7 (Page 171). Your project
can include program blocks in any of the three programming languages: SCL, LAD, and FBD.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 183

Programming concepts

7.5 Programming language

7.5.3.1

184

SCL instructions use standard programming operators, such as for assignment (:=),
mathematical functions (+ for addition, - for subtraction, * for multiplication, and / for division).
SCL also uses standard PASCAL program control operations, such as IF-THEN-ELSE, CASE,
REPEAT-UNTIL, GOTO and RETURN. You can use any PASCAL reference for syntactical
elements of the SCL programming language. Many of the other instructions for SCL, such as
timers and counters, match the LAD and FBD instructions. For more information about specific
instructions, refer to the specific instructions in the chapters for Basic instructions (Page 207)
and Extended instructions (Page 319).

SCL program editor

You can designate any type of block (OB, FB, or FC) to use the SCL programming language at
the time you create the block. STEP 7 provides an SCL program editor that includes the
following elements:

® Interface section for defining the parameters of the code block
® Code section for the program code
® Instruction tree that contains the SCL instructions supported by the CPU

You enter the SCL code for your instruction directly in the code section. The editor includes
buttons for common code constructs and comments. For more complex instructions, simply
drag the SCL instructions from the instruction tree and drop them into your program. You can
also use any text editor to create an SCL program and then import that file into STEP 7.

Function_1
Mame Data type Comment
4l - Input
- StartStopSwitch Bool
w Qutput
- RunYesho Bool

B VUR N |

NN

- [nQOut

<Rdd new-

Temp

<Rdd new-

W = oo
L]

g
q

Constant
10 - <Add new:

- Return

A e

Function_1 Vaoid

e e

|F.. CASE.. FOR.. WHILE. .
“* QF. TODO. DO.. °

iy

IF THEN

%]

// Statement section IF

4 | END_IF;

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.5 Programming language

In the Interface section of the SCL code block you can declare the following types of
parameters:

e |nput, Output, InOut, and Ret_Val: These parameters define the input tags, output tags, and
return value for the code block. The tag name that you enter here is used locally during the
execution of the code block. You typically would not use the global tag name in the tag table.

e Static (FBs only; the illustration above is for an FC): The code block uses static tags for
storage of static intermediate results in the instance data block. The block retains static data
until overwritten, which can be after several cycles. The names of the blocks, which this
block calls as multi-instance, are also stored in the static local data.

® Temp: These parameters are the temporary tags that are used during the execution of the
code block.

e Constant: These are named constant values for your code block.

If you call the SCL code block from another code block, the parameters of the SCL code block
appear as inputs or outputs.

: END
“Shart” = StartStopSwitch Auriveshio- “On"

In this example, the tags for "Start" and "On" (from the project tag table) correspond to
"StartStopSwitch" and "RunYesNo" in the declaration table of the SCL program.

7.5.3.2 SCL expressions and operations

Constructing an SCL expression

An SCL expression is a formula for calculating a value. The expression consists of operands
and operators (such as *, /, + or -). The operands can be tags, constants, or
expressions.

The evaluation of the expression occurs in a certain order, which is defined by the following
factors:

® Every operator has a pre-defined priority, with the highest-priority operation performed first.
® For operators with equal priority, the operators are processed in a left-to-right sequence.

® You use parentheses to designate a series of operators to be evaluated together.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 185

Programming concepts

7.5 Programming language

The result of an expression can be used either for assigning a value to a tag used by your
program, as a condition to be used by a control statement, or as parameters for another SCL
instruction or for calling a code block.

Table 7-2 Operators in SCL

Type Operation Operator Priority
Parentheses (Expression) (,) 1
Math Power > 2
Sign (unary plus) + 3
Sign (unary minus) - 3
Multiplication * 4
Division / 4
Modulo MOD 4
Addition + 5
Subtraction - 5
Comparison Less than < 6
Less than or equal to <= 6
Greater than > 6
Greater than or equal to >= 6
Equal to = 7
Not equal to <> 7
Bit logic Negation (unary) NOT 3
AND logic operation AND or & 8
Exclusive OR logic operation XOR 9
OR logic operation OR 10
Assignment Assignment = 11

As a high-level programming language, SCL uses standard statements for basic tasks:
® Assignment statement: :=
® Mathematical functions: +, -, *, and /

® Addressing of global variables (tags): "<tag name>" (Tag name or data block name
enclosed in double quotes)

® Addressing of local variables: #<variable name> (Variable name preceded by "#" symbol)

The following examples show different expressions for different uses:

"C" = #A+H#B; Assigns the sum of two local variables to a tag
"Data block 1".Tag := #A; Assignment to a data block tag

IF #A > #B THEN "C" := $#A; Condition for the IF-THEN statement

"C" := SQRT (SQR (#A) + SQR (#B)); Parameters for the SQRT instruction

Arithmetic operators can process various numeric data types. The data type of the result is
determined by the data type of the most-significant operands. For example, a multiplication
operation that uses an INT operand and a REAL operand yields a REAL value for the result.

S7-1200 Programmable controller
186 System Manual, V4.4 11/2019, ASE02486680-AN

Programming concepfts

7.5 Programming language

Control statements

Conditions

A control statement is a specialized type of SCL expression that performs the following tasks:
® Program branching

® Repeating sections of the SCL program code

® Jumping to other parts of the SCL program

e Conditional execution

The SCL control statements include IF-THEN, CASE-OF, FOR-TO-DO, WHILE-DO, REPEAT-
UNTIL, CONTINUE, GOTO, and RETURN.

A single statement typically occupies one line of code. You can enter multiple statements on
one line, or you can break a statement into several lines of code to make the code easier to
read. Separators (such as tabs, line breaks and extra spaces) are ignored during the syntax
check. An END statement terminates the control statement.

The following examples show a FOR-TO-DO control statement. (Both forms of coding are

syntactically valid.)
FOR x := 0 TO max DO sum := sum + value(x); END_ FOR;

FOR x := 0 TO max DO
sum := sum + value(x);
END_FOR;

A control statement can also be provided with a label. A label is set off by a colon at the

beginning of the statement:
Label: <Statement>;

The STEP 7 online help provides a complete SCL programming language reference.

A condition is a comparison expression or a logical expression whose result is of type BOOL
(with the value of either TRUE or FALSE). The following example shows conditions of various
types:

#Temperature > 50 Relational expression
#Counter <= 100

#CHARL < 'S’

(#Alpha <> 12) AND NOT #Beta Comparison and logical expression

5 + #Alpha Arithmetic expression

A condition can use arithmetic expressions:

® The condition of the expression is TRUE if the result is any value other than zero.

® The condition of the expression is FALSE if the result equals zero.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 187

Programming concepts

7.5 Programming language

Calling other code blocks from your SCL program

To call another code block in your user program, simply enter the name (or absolute address)
of the FB or FC with the parameters. For an FB, you must provide the instance DB to be called
with the FB.

<DB name> (Parameter list) Call as a single instance
<#Instance name> (Parameter list) Call as multi-instance
"MyDB" (MyInput:=10, MyInOut:="Tagl");

<FC name> (Parameter list) Standard call
<Operand>:=<FC name> (Parameter list) Call in an expression
"MyFC" (MyInput:=10, MyInOut:="Tagl");

You can also drag blocks from the navigation tree to the SCL program editor, and complete the
parameter assignment.

Adding block comments to SCL code

Addressing

188

You can include a block comment in your SCL code by including the comment text between (*
and *). You can have any number of comment lines between the (* and the *). Your SCL
program block can include many block comments. For programming convenience, the SCL
editor includes a block comment button along with common control statements:

CASE... FOR... WHILE..

IF... OF.. TODO. DO..

..

As with LAD and FBD, SCL allows you to use either tags (symbolic addressing) or absolute
addresses in your user program. SCL also allows you to use a variable as an array index.

Absolute addressing

$10.0 Precede absolute addresses with the "%" symbol.
$MB100 Without the "%", STEP 7 generates an undefined
tag error at compile time.

Symbolic addressing

"PLC_Tag_1" Tag in PLC tag table
"Data block 1".Tag 1 Tag in a data block
"Data_block 1".MyArray[#i] Array element in a data block array

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.5 Programming language

7.53.3 Indexed addressing with PEEK and POKE instructions

SCL provides PEEK and POKE instructions that allow you to read from or write to data blocks,
I/0, or memory. You provide parameters for specific byte offsets or bit offsets for the operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

PEEK (area:=_in_,
dbNumber:= in_,
byteOffset:= in);

PEEK WORD (area:=_in _,
dbNumber:= in_,
byteOffset:= in);

PEEK _DWORD (area:=_in_,
dbNumber:= in_,
byteOffset:= in);

PEEK BOOL(area:=_in _,
dbNumber:= in ,

byteOffset:= in

bitOffset:= in)

’
’

POKE (area:=_in_,
dbNumber:= in_,
byteOffset:= in_,
value:=_in_);

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Reads the byte referenced by byteOffset of
the referenced data block, I/0O or memory area.
Example referencing data block:

$MB100 := PEEK (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when
#i = 3

Reads the word referenced by byteOffset of
the referenced data block, I/0O or memory area.
Example:

$MW200 := PEEK_WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i);

Reads the double word referenced by byte Off-
set of the referenced data block, /O or mem-
ory area.

Example:

$MD300 := PEEK DWORD (area:=16#84,
dbNumber:=1, byteOffset:=#i) ;

Reads a Boolean referenced by the bitOffset
and byteOffset of the referenced data block, I/
O or memory area

Example:

$MB100.0 := PEEK_BOOL (area:=16#84,
dbNumber:=1, byteOffset:=#ii,
bitOffset:=#j);

Writes the value (Byte, Word, or DWord) to the
referenced byteOffset of the referenced data
block, 1/0 or memory area

Example referencing data block:

POKE (area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag_1");
Example referencing QB3 output:

POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag_1");

189

Programming concepts

7.5 Programming language

POKE_BOOL (area:=_in_, _ Writes the Boolean value to the referenced bi-
dbNumber:=_in_, tOffset and byteOffset of the referenced data

byteOffset:= in , block, I/O or memory area
bitOffset:=_in_,

value:= in); Example:
- - POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5,
value:=0) ;

POKE_BLK (area_src:= in_, Writes "count" number of bytes starting at the
dbNumber_src:=_in_, referenced byte Offset of the referenced
byteOffset src:= in_, source data block, 1/0 or memory area to the
area_dest:=_in_, referenced byteOffset of the referenced desti-

dbNumber_dest:= in_, nation data block, I/O or memory area
byteOffset dest:=_in_, ’ ry

count:= in_); Example:
POKE_BLK (area_src:=16#84,
dbNumber src:=#src_db,
byteOffset_src:=#src_byte,
area dest:=16#84,
dbNumber dest:=#src_db,
byteOffset dest:=#src_byte,
count:=10) ;

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16481 ||
16482 | Q
16#83 | M
16#84 | DB
7.5.4 EN and ENO for LAD, FBD and SCL

Determining "power flow" (EN and ENO) for an instruction

Certain instructions (such as the Math and the Move instructions) provide parameters for EN
and ENO. These parameters relate to power flow in LAD or FBD and determine whether the
instruction is executed during that scan. SCL also allows you to set the ENO parameter for a
code block.

® EN (Enable In) is a Boolean input. Power flow (EN = 1) must be present at this input for the
box instruction to be executed. If the EN input of a LAD box is connected directly to the left
power rail, the instruction will always be executed.

® ENO (Enable Out) is a Boolean output. If the box has power flow at the EN input and the box
executes its function without error, then the ENO output passes power flow (ENO = 1) to the
next element. If an error is detected in the execution of the box instruction, then power flow
is terminated (ENO = 0) at the box instruction that generated the error.

S7-1200 Programmable controller
190 System Manual, V4.4 11/2019, ASE02486680-AN

Programming concepfts

7.5 Programming language

Table 7-3 Operands for EN and ENO

Program editor Inputs/outputs Operands Data type

LAD EN, ENO Power flow Bool

FBD EN I, I:P, Q, M, DB, Temp, Power Flow Bool
ENO Power Flow Bool

SCL EN' TRUE, FALSE Bool
ENO? TRUE, FALSE Bool

' The use of EN is only available for FBs.

2 The use of ENO with the SCL code block is optional. You must configure the SCL compiler to set ENO
when the code block finishes.

Configuring SCL to set ENO
To configure the SCL compiler for setting ENO, follow these steps:
1. Select the "Settings" command from the "Options" menu.
2. Expand the "PLC programming" properties and select "SCL (Structured Control Language)".
3. Select the "Set ENO automatically” option.

Using ENO in program code

You can also use ENO in your program code, for example by assigning ENO to a PLC tag, or
by evaluating ENO in a local block.

Examples:
“MyFunction”
(IN1 := .. ,
IN2 := .. ,

OUT1 => #myOut,
ENO => #statusFlag); // PLC tag statusFlag holds the value of ENO

“MyFunction”
(IN1 = ..
IN2 = .. ,
OUT1 => #myOut,
ENO => ENO); // block status flag of "MyFunction"
// is stored in the local block

IF ENO = TRUE THEN
// execute code only if MyFunction returns true ENO

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 191

Programming concepts

7.6 Protection

Effect of Ret_Val or Status parameters on ENO

See also

7.6

7.6.1

192

Some instructions, such as the communication instructions or the string conversion

instructions, provide an output parameter that contains information about the processing of the
instruction. For example, some instructions provide a Ret_Val (return value) parameter, which
is typically an Int data type that contains status information in a range from -32768 to +32767.
Other instructions provide a Status parameter, which is typically a Word data type that stores
status information in a range of hexadecimal values from 16#0000 to 16#FFFF. The numerical
value stored in a Ret_Val or a Status parameter determines the state of ENO for that instruction.

e Ret_Val: A value from 0 to 32767 typically sets ENO = 1 (or TRUE). A value from -32768 to
-1 typically sets ENO = 0 (or FALSE). To evaluate Ret_Val, change the representation to
hexadecimal.

e Status: A value from 16#0000 16#7FFF typically sets ENO = 1 (or TRUE). A value from
16#8000 to 16#FFFF typically sets ENO = 0 (or FALSE).

Instructions that take more than one scan to execute often provide a Busy parameter (Bool) to
signal that the instruction is active but has not completed execution. These instructions often
also provide a Done parameter (Bool) and an Error parameter (Bool). Done signals that the
instruction was completed without error, and Error signals that the instruction was completed
with an error condition.

® When Busy = 1 (or TRUE), ENO = 1 (or TRUE).
® When Done = 1 (or TRUE), ENO = 1 (or TRUE).
® When Error = 1 (or TRUE), ENO = 0 (or FALSE).

OK (Check validity) and NOT_OK (Check invalidity) (Page 229)

Protection

Access protection for the CPU

The CPU provides four levels of security for restricting access to specific functions. When you
configure the security level and password for a CPU, you limit the functions and memory areas
that can be accessed without entering a password.

Each level allows certain functions to be accessible without a password. The default condition
for the CPU is to have no restriction and no password-protection. To restrict access to a CPU,
you configure the properties of the CPU and enter the password.

Entering the password over a network does not compromise the password protection for the
CPU. Password protection does not apply to the execution of user program instructions
including communication functions. Entering the correct password provides access to all of the
functions at that level.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.6 Protection

PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU.

Table 7-4 Security levels for the CPU

Security level Access restrictions

Full access (no pro- | Allows full access without password protection.

tection)

Read access Allows HMI access, comparing Offline/Online code blocks, and all forms of PLC-

to-PLC communications without password protection.

Password is required for modifying (writing to) the CPU. Password is not required
for changing the CPU mode (RUN/STOP).

HMI access Allows HMI access and all forms of PLC-to-PLC communications without pass-
word protection.

Password is required for reading the data in the CPU, for comparing Offline/Online
code blocks, for modifying (writing to) the CPU, and for changing the CPU mode
(RUN/STOP).

No access (com- | Allows no access without password protection.

plete protection) Password is required for HMI access, reading the data in the CPU, comparing
Offline/Online code blocks, and for modifying (writing to) the CPU.

Note that you can set an emergency (temporary) IP address (Page 933) for the CPU at any
security level.

Passwords are case-sensitive. To configure the protection level and passwords, follow these
steps:

1. In the "Device configuration”, select the CPU.
2. In the inspector window, select the "Properties" tab.

3. Select the "Protection" property to select the protection level and to enter passwords.

Protection

Protection

Select the access leve| for the PLC.

Access level ACCESE ACCESE permission
Hil head wirice Password Confirmanion
() Full access (no protection) W ' d | SRR || SREEER R
(7) read access s o
(®) rinl access

- ! Mo access (complete protection)

When you download this configuration to the CPU, the user has HMI access and can access
HMI functions without a password. To read data or compare Offline/Online code blocks, the
user must enter the configured password for "Read access" or the password for "Full access

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 193

Programming concepts

7.6 Protection

(no protection)". To write data, the user must enter the configured password for "Full access (no
protection)".

A\ WARNING
Unauthorized access to a protected CPU

Users with CPU full access privileges have privileges to read and write PLC variables.
Regardless of the access level for the CPU, Web server users can have privileges to read and
write PLC variables. Unauthorized access to the CPU or changing PLC variables to invalid
values could disrupt process operation and could result in death, severe personal injury and/
or property damage.

Authorized users can perform operating mode changes, writes to PLC data, and firmware
updates. Siemens recommends that you observe the following security practices:

e Password protect CPU access levels and Web server user IDs (Page 943) with strong
passwords. Strong passwords are at least ten characters in length, mix letters, numbers,
and special characters, are not words that can be found in a dictionary, and are not names
or identifiers that can be derived from personal information. Keep the password secret and
change it frequently.

® Enable access to the Web server only with the HTTPS protocol.
® Do not extend the default minimum privileges of the Web server "Everybody" user.

e Perform error-checking and range-checking on your variables in your program logic
because Web page users can change PLC variables to invalid values.

Connection mechanisms

194

To access remote connection partners with PUT/GET instructions, the user must also have
permission.

By default, the "Permit access with PUT/GET communication" option is not enabled. In this
case, read and write access to CPU data is only possible for communication connections that
require configuration or programming both for the local CPU and for the communication
partner. Access through BSEND/BRCYV instructions is possible, for example.

Connections for which the local CPU is only a server (meaning that no configuration/
programming of the communication with the communication partner exists at the local CPU),
are therefore not possible during operation of the CPU, for example:

e PUT/GET, FETCH/WRITE or FTP access through communication modules
e PUT/GET access from other S7 CPUs
e HMI access through PUT/GET communication

If you want to allow access to CPU data from the client side, that is, you do not want to restrict
the communication services of the CPU, follow these steps:

1. Configure the protection access level to be any level other than "No access (complete
protection)".

2. Select the "Permit access with PUT/GET communication" check box.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.6 Protection

Connection mechanisms

[Permit sccess with PUT/GET communication from remote parner (FLC, HMI, OFC,)

When you download this configuration to the CPU, the CPU permits PUT/GET communication
from remote partners

7.6.2 External load memory

You can also prevent copies of internal load memory to external load memory (SIMATIC
memory card). To prevent the copying of internal load memory to external load memory follow
these steps:

1. From the device configuration of the CPU in STEP 7, select "Protection" from the General
properties.

2. In the "External Load Memory" section, select "Disable copy from internal load memory to
external load memory".

See also the topic Inserting a memory card in the CPU (Page 1128) for a description of how this
property affects the insertion of a memory card into the CPU.

7.6.3 Know-how protection

Know-how protection allows you to prevent one or more code blocks (OB, FB, FC, or DB) in
your program from unauthorized access. You create a password to limit access to the code
block. The password-protection prevents unauthorized reading or modification of the code
block. Without the password, you can read only the following information about the code
block:

® Block title, block comment, and block properties
® Transfer parameters (IN, OUT, IN_OUT, Return)
® (Call structure of the program

® (lobal tags in the cross references (without information on the point of use), but local tags
are hidden

When you configure a block for "know-how" protection, the code within the block cannot be
accessed except after entering the password.

Use the "Properties" task card of the code block to configure the know-how protection for that
block. After opening the code block, select "Protection” from Properties.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 195

Programming concepts

7.6 Protection
| General |
;?;-I-1|TL:I|'|--|'| Protection
Time stamps Know-how protection
Compilation
m The block 13 not protected
Atributes Frotection
Copy protection
. Mo binding e
1. In the Properties for the code block, click Ll et
the "Protection" button to display the
"Know-how protection" dialog.
2. Click the "Define" button to enter the
password.
After entering and confirming the password, LT
CIICk "OK"' Enter protection pazaword
Hew n
Confirrm. || n
i'T1 [cancel
.
764 Copy protection

An additional security feature allows you to bind program blocks for use with a specific memory
card or CPU. This feature is especially useful for protecting your intellectual property. When you
bind a program block to a specific device, you restrict the program or code block for use only
with a specific memory card or CPU. This feature allows you to distribute a program or code
block electronically (such as over the Internet or through email) or by sending a memory card.
Copy protection is available for OBs (Page 172), FBs (Page 175), and FCs (Page 174). The
S7-1200 CPU supports three types of block protection:

® Binding to the serial number of a CPU
® Binding to the serial number of a memory card

® Dynamic binding with mandatory password

S7-1200 Programmable controller
196 System Manual, V4.4 11/2019, ASE02486680-AN

Programming concepfts

7.6 Protection

Use the "Properties" task card of the code block to bind the block to a specific CPU or memory
card.

1. After opening the code block, select "Protection”.

General |
General |
Protection
Infarnmation
Time stamps Knovw-how protection
Compilation
m The block iz not protected
Attribigs Frotection _.|
Copy protection
Ll o
Ho binding -

2. From the drop-down list under "Copy protection” task, select the type of copy protection that
you want to use.

Know-how protection

bihe. ok s nal gt led

Protection
Copy protection
Bind to senal number of the memery card -
(&) Serial number is inserted when downloading to & device or a memory card.
| _!hc password ipg_tnpgpruteqhqp has not been d_cﬁnc_d_

_ Define password

() Emtersenal number:

3. For binding to the serial number of a CPU or memory card, select either to insert the serial
number when downloading, or enter the serial number for the memory card or CPU.

Note

The serial number is case-sensitive.

For dynamic binding with mandatory password, define the password that you must use to
download or copy the block.

When you subsequently download (Page 198) a block with dynamic binding, you must enter
the password to be able to download the block. Note that the copy protection password and
the know-how protection (Page 195) password are two separate passwords.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 197

Programming concepts

7.7 Downloading the elements of your program

1.7 Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs) in
internal load memory or if a SIMATIC memory card is present in external load memory (the
card).

Estended download ts Sevice

Configared aece s rades of Ll 1*

Devioe Bt Bt e Addrrii
LT ORI SC000.. TORR V2 T

PG irtpace fof loading B Eiond DB 0 IR F O e w

Ator il Apwias InTanget subert o i il pice ikl deviced

MashiLED:

| Loed Caeiel |

You can download your project from the programming device to your CPU from any of the
following locations:

® Project tree: Right-click the program element, and then click the context-sensitive
"Download" selection.

® Online menu: Click the "Download to device" selection.
® Toolbar: Click the "Download to device" icon.
® Device configuration: Right-click the CPU and select the elements to download.

Note that if you have applied dynamic binding with mandatory password (Page 196) to any of
the program blocks, you must enter the password for the protected blocks in order to download
them. If you have configured this type of copy protection for multiple blocks, you must enter the
password for each of the protected blocks in order to download them.

Note

Downloading a program does not clear or make any changes to existing values in retentive
memory. If you want to clear retentive memory before a download, then reset your CPU to
factory settings prior to downloading the program.

You can also download a panel project for the Basic HMI panels (Page 32) from the TIA Portal
to a memory card in the S7-1200 CPU.

S7-1200 Programmable controller
198 System Manual, V4.4 11/2019, ASE02486680-AN

Programming concepfts

7.7 Downloading the elements of your program

Downloading when the configured CPU is different from the connected CPU

STEP 7 and the S7-1200 permit a download if the connected CPU has the capacity to store a
download from the configured CPU, based on the memory requirements of the project and the
compatibility of the 1/0. You can download the configuration and program from a CPU to a
larger CPU, for example, from a CPU 1211C DC/DC/DC to a CPU 1215C DC/DC/DC because
the I/O is compatible and the memory is sufficient. In this case, the download operation displays
a warning, "Differences between configured and target modules (online)" along with the article
numbers and firmware versions in the "Load preview" dialog. You must choose either "No
action" if you do not want the download to proceed or "Accept all" if you do want the download
to proceed:

fams (L Tages Wesipgpe Adrion

v nCa Lasding mil not be perormad becains preczrdons am natmas

il
BEST 211-1AES0-INEY

¥ Device confpuma.. Oelbere and replace fpste e date i sarger Doewndoad 10 device

B
]
]
-]
@ ot Cumniaed samwans n desice
-]

T fbvarier Darnkand alalame s and new i oess Carsisientdewnios

Note

When you go online (Page 1268) after downloading the configured CPU to a different connected
CPU, you see the project for the configured CPU with online status indicators in the project tree.
In the online and diagnostics view, however, you see the actual connected CPU module type.

Devices
i | =) | = Online sccess
e General
+ Disgnostics
» W Local modules -~ m Module
[F mncasicurancoonona | = S : '
Y D=vice configuratian Diugoescs bufler | CPU 12150 DODCIDC .
¥ Online & disgnastics Cicle time BEST 215-1AGL0-0XED
R y
v I3 Fregram blocks [*] b 4 %
[Suchrciony obiscs b PROFINETintersce [X1]
;i b Functions W4.2.0

¥ g Externsl source files 1

+ [g PLctogs @ MAT Vida
v L§ FLC data ypes
¥ g5l Warch and force tables)
¥ i Online backups

v [Taces

b [Bi Device proxy data

Figure 7-1 Online view when configured CPU is different from connected CPU

1

You can, of course, change vour device (Page 156) in the device configuration so that the
configured CPU is the same module type as the connected CPU. The "Change device" dialog
provides complete compatibility details when you try to change a device.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 199

Programming concepts

7.7 Downloading the elements of your program

STEP 7 and the S7-1200 prohibit a download if the connected CPU does not have the capacity
to store a download from the configured CPU; for example, you cannot download the hardware
configuration and program for the following cases:

e CPU 1215C DC/DC/DC to a CPU 1212C DC/DC/DC due to insufficient work memory
e CPU 1211C DC/DC/Relay to a CPU 1211C DC/DC/DC due to I/O differences

e CPU 1217C DC/DC/DC to any CPU 1211C, CPU 1212C, CPU 1214C, or CPU 1215C due
to the 1.5 V DC outputs in the CPU 1217C

e CPU 1214C V4.2.x to CPU 1214C V4.0, due to downward firmware version incompatibility

The "Load preview" dialog displays an error in such cases:

| S 1 Targm Wamsge Heson
* ML Londing wil nos b perirmed becauss precand s are rarmes

Recovering from a failed download

200

If the download fails, the Info tab of the Inspector Window displays the reason. The diagnostic
buffer also provides information. After a failed download, follow these steps to be able to
download successfully:

1. Correct the problem as described in the error message.
2. Reattempt the download.

In rare cases, the download succeeds but a subsequent power cycle of the CPU fails. In this
case you may see an error in the diagnostic buffer such as:

® 16#02:4175 -- CPU error: Memory card evaluation error; Unknown or incompatible version
of CPU configuration description current card type: No memory card Function finished/
aborted, new startup inhibit set: ..- Memory card missing, wrong type, wrong content or
protected

If this occurs and additional attempts to download fail, you must clear the internal load memory
or external load memory:

1. If using internal load memory, reset the CPU to factory settings.

2. If using a SIMATIC memory card, remove it and delete the contents of the memory card
(Page 134) before reinserting.

3. Download the hardware configuration and software.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7.8 Synchronizing the online CPU and offline project

See also
Synchronizing the online CPU and offline project (Page 201)

7.8 Synchronizing the online CPU and offline project

When you download project blocks to the CPU, the CPU can detect whether blocks or tags
have changed in the online CPU since the last download. In such cases, the CPU offers you the
choice to synchronize the changes. This means that you can upload the online CPU changes
to the project before downloading the project to the CPU. Changes in the online CPU can be
due to a variety of factors:

® Changes to the start values of data block tags during runtime, for example by
the WRIT_DBL instruction (Page 501) or by loading a recipe

e A download from a "secondary" project (a project other than the one that originated the last
download) where one or more of the following conditions exist:

— The online CPU includes program blocks that do not exist in the project.

Data block tags or block attributes differ between the offline project and online CPU.

PLC tags exist in the online CPU that do not exist in the offline project.

Note

If you edit blocks or tags in the project that you used for the last download, you do not have to
make any choices about synchronization. STEP 7 and the CPU detect that the offline project
changes are newer than the online CPU and proceeds with a normal download operation.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 201

Programming concepts

7.8 Synchronizing the online CPU and offline project

Synchronization choices

When you download a project to the CPU, you see the synchronization dialog if STEP 7 detects
that data blocks or tags in the online CPU are newer than the project values. For example, if the
STEP 7 program has executed WRIT_DBL and changed a start value for a tag in Data_block_1,
STEP 7 displays the following synchronization dialog when you initiate a download:

Software 1ynr|i'r'n'nlr:.t1hn Before loadi rig to a device

9 “The online propram containg changes you may first need ko load in your project before you parform “Download 1o device™.

Softemre synchronization Status Action
& - orc
[v] * ‘Program blacks'
Q Data_block 1 [D81] L] Uplcad and overarite in the project

Offlineianiine comparisan | Synchronize | Continue withgut synchronization Cancel

This dialog lists the program blocks where differences exist. From this dialog, you have the
following choices:

202

Online/offline comparison: If you click this button, STEP 7 displays the program blocks,
system blocks, technology objects, PLC tags, and PLC data types for the project

as compared to the online CPU (Page 1277). For each object, you can click to see a detailed
analysis of the differences including time stamps. You can use this information to decide
what to do about the differences between the online CPU and the project.

Synchronize: If you click this button, STEP 7 uploads the data blocks, tags, and other
objects from the online CPU to the project. You can then continue with the program

download, unless program execution has again caused the project to be out of sync with the
CPU.

Continue without synchronization: If you click this button, STEP 7 downloads the project to
the CPU.

Cancel: If you click this button, you cancel the download operation.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7. 10 Debugging and testing the program

7.9 Uploading from the online CPU

You can also copy the program blocks from an online CPU or a memory card attached to your
programming device.

Prepare the offline project for the copied program blocks: = _ifze
1. Add a CPU device that matches the online CPU. i
2. Expand the CPU node once so that the "Program V.
. . m Drevice configuration
blocks" folder is visible.

W Cnline & diagnostics

w g Program blocks

B ~dd new bl
2/ Main [0B1]

To upload the program blocks from the online CPU to the & &a anline
offline project, follow these steps:

1. Click the "Program blocks" folder in the offline project. [

2. Click the "Go online" button.

3. Click the "Upload" button.

4. Confirm your decision from the Upload dialog
(Page 1268).

When the upload is complete, STEP 7 displays all of the
uploaded program blocks in the project.

Rl [PLC 1 [CPU1212C DOUODC]
!]" Device configuration
% Online & diagnasncs

- :I- Frogram blocks
& Add news block
2 Main [OB1]
3 Block_1 [FC1]

7.9.1 Comparing the online CPU to the offline CPU

You can use the "Compare" editor (Page 1277) in STEP 7 to find differences between the online
and offline projects. You might find this useful prior to uploading from the CPU.

7.10 Debugging and testing the program

7.10.1 Monitor and modify data in the CPU

As shown in the following table, you can monitor and modify values in the online CPU.

Table 7-5 Monitoring and modifying data with STEP 7
Editor Monitor Modify Force
Watch table Yes Yes No
Force table Yes No Yes
Program editor Yes Yes No

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

203

Programming concepts

7. 10 Debugging and testing the program

7.10.2

204

Editor Monitor Modify Force
Tag table Yes No No
DB editor Yes No No
i Monitoring with a
watch table
Bl=% 72 ADF B
Hame Address Display formiat hlanitor value o dify value i
on” 0.0 Boal B FALSE
oA 10.1 Bool [=] FALSE
*Fun® Boal [E FALSE
“on" “ Bun’ Monitoring with the LAD editor
e s L { F——i
“Run” E
g pmd

Refer to the "Online and diagnostics" chapter for more information about monitoring and
modifying data in the CPU (Page 1279).

Watch tables and force tables

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project to
support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

With a watch table, you can monitor and interact with the CPU as it executes the user program.
You can display or change values not only for the tags of the code blocks and data blocks, but
also for the memory areas of the CPU, including the inputs and outputs (I and Q), peripheral
inputs (I:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the physical outputs (Q:P) of a CPU in STOP mode. For
example, you can assign specific values to the outputs when testing the wiring for the CPU.

STEP 7 also provides a force table for "forcing" a tag to a specific value. For more information
about forcing, see the section on forcing values in the CPU (Page 1286) in the "Online and
Diagnostics" chapter.

Note
The force values are stored in the CPU and not in the watch table.

You cannot force an input (or "I" address). However, you can force a peripheral input. To force
a peripheral input, append a ":P" to the address (for example: "On:P").

STEP 7 also provides the capability of tracing and recording program variables based on trigger
conditions (Page 1296).

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Programming concepfts

7. 10 Debugging and testing the program

7.10.3 Cross reference to show usage

The Inspector window displays cross-reference information about how a selected object is
used throughout the complete project, such as the user program, the CPU and any HMI
devices. The "Cross-reference" tab displays the instances where a selected object is being
used and the other objects using it. The Inspector window also includes blocks which are only
available online in the cross-references. To display the cross-references, select the "Show
cross-references" command. (In the Project view, find the cross references in the "Tools"
menu.)

Note

You do not have to close the editor to see the cross-reference information.

You can sort the entries in the cross-reference. The cross-reference list provides an overview
of the use of memory addresses and tags within the user program.

® When creating and changing a program, you retain an overview of the operands, tags and
block calls you have used.

® From the cross-references, you can jump directly to the point of use of operands and tags.

® During a program test or when troubleshooting, you are notified about which memory
location is being processed by which command in which block, which tag is being used in
which screen, and which block is called by which other block.

Table 7-6 Elements of the cross reference

Column Description

Object Name of the object that uses the lower-level objects or that is being used by the lower-
level objects

Number Number of uses

Point of use Each location of use, for example, network

Property Special properties of referenced objects, for example, the tag names in multi-in-
stance declarations

as Shows additional information about the object, such as whether an instance DB is
used as template or as a multiple instance

Access Type of access, whether access to the operand is read access (R) and/or write ac-
cess (W)

Address Address of the operand

Type Information on the type and language used to create the object

Path Path of object in project tree

Depending on the installed products, the cross-reference table displays additional or different
columns.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 205

Programming concepts

7. 10 Debugging and testing the program

7.104

206

Call structure to examine the calling hierarchy

The call structure describes the call hierarchy of the block within your user program. It provides
an overview of the blocks used, calls to other blocks, the relationships between blocks, the data
requirements for each block, and the status of the blocks. You can open the program editor and
edit blocks from the call structure.

Displaying the call structure provides you with a list of the blocks used in the user program.
STEP 7 highlights the first level of the call structure and displays any blocks that are not called
by any other block in the program. The first level of the call structure displays the OBs and any
FCs, FBs, and DBs that are not called by an OB. If a code block calls another block, the called
block is shown as an indentation under the calling block. The call structure only displays those
blocks that are called by a code block.

You can selectively display only the blocks causing conflicts within the call structure. The
following conditions cause conflicts:

® Blocks that execute any calls with older or newer code time stamps
® Blocks that call a block with modified interface

® Blocks that use a tag with modified address and/or data type

® Blocks that are called neither directly nor indirectly by an OB

® Blocks that call a non-existent or missing block

You can group several block calls and data blocks as a group. You use a drop-down list to see
the links to the various call locations.

You can also perform a consistency check to show time stamp conflicts. Changing the time
stamp of a block during or after the program is generated can lead to time stamp conflicts, which
in turn cause inconsistencies among the blocks that are calling and being called.

® Most time stamp and interface conflicts can be corrected by recompiling the code blocks.

e [f compilation fails to clear up inconsistencies, use the link in the "Details" column to go to
the source of the problem in the program editor. You can then manually eliminate any
inconsistencies.

® Any blocks marked in red must be recompiled.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.1 Bit logic operations
8.1.1 Bit logic instructions
LAD and FBD are very effective for handling Boolean logic. While SCL is especially effective for
complex mathematical computation and for project control structures, you can use SCL for
Boolean logic.
LAD contacts
Table 8-1 Normally open and normally closed contacts
LAD SCL Description
In IF in THEN Normally open and normally closed contacts: You can connect contacts to
—A Statement; other contacts and create your own combination logic. If the input bit you
ELSE specify uses memory identifier | (input) or Q (output), then the bit value is
Statement; read from the process-image register. The physical contact signals in your
END_IF; control process are wired to | terminals on the PLC. The CPU scans the
"IN IF NOT (in) THEN wired input signals and continuously updates the corresponding state val-
—/— Statement ues in the process-image input register.
ELSE You can perform an immediate read of a physical input using ":P" following
Statement; the | offset (example: "%I3.4:P"). For animmediate read, the bit data values
END_IF; are read directly from the physical input instead of the process image. An
immediate read does not update the process image.
Table 8-2 Data types for the parameters
Parameter Data type Description
IN Bool Assigned bit

® The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.

® The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.

® Contacts connected in series create AND logic networks.

® Contacts connected in parallel create OR logic networks.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

207

Basic instructions

8.1 Bit logic operations

FBD AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
EXCLUSIVE OR (x) box networks where you can specify bit values for the box inputs and
outputs. You may also connect to other logic boxes and create your own logic combinations.
After the box is placed in your network, you can drag the "Insert input" tool from the "Favorites"
toolbar or instruction tree and then drop it onto the input side of the box to add more inputs. You
can also right-click on the box input connector and select "Insert input".

Box inputs and outputs can be connected to another logic box, or you can enter a bit address
or bit symbol name for an unconnected input. When the box instruction is executed, the current
input states are applied to the binary box logic and, if true, the box output will be true.

Table 8-3 AND, OR, and XOR boxes
FBD SCL! Description
& out := inl AND in2; | Allinputs of an AND box must be TRUE for the output to be TRUE.
"I —
2" — st —
— out := inl OR in2; | Any input of an OR box must be TRUE for the output to be TRUE.
"I —
12" — —
out := inl XOR in2; | An odd number of the inputs of an XOR box must be TRUE for the

"t L

output to be TRUE.

' For SCL: You must assign the result of the operation to a variable to be used for another statement.

Table 8-4 Data types for the parameters
Parameter Data type Description
IN1, IN2 Bool Input bit

NOT logic inverter

Table 8-5

Invert RLO (Result of Logic Operation)

LAD

FBD

SCL

Description

—] NOT —

"2t

—0

NOT

"It
"

For FBD programming, you can drag the "Invert RLO" tool

from the "Favorites" toolbar or instruction tree and then drop it

on an input or output to create a logic inverter on that box

connector.

The LAD NOT contact inverts the logical state of power flow

input.

e Ifthere is no power flow into the NOT contact, then there is
power flow out.

e |fthereis power flow into the NOT contact, then there is no
power flow out.

208

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.1 Bit logic operations

Output coil and assignment box

The coil output instruction writes a value for an output bit. If the output bit you specify uses
memory identifier Q, then the CPU turns the output bit in the process-image register on or off,
setting the specified bit equal to power flow status. The output signals for your control actuators
are wired to the Q terminals of the CPU. In RUN mode, the CPU system continuously scans
your input signals, processes the input states according to your program logic, and then reacts
by setting new output state values in the process-image output register. The CPU system
transfers the new output state reaction that is stored in the process-image register, to the wired
output terminals.

Table 8-6 Assignment and negate assignment

LAD FBD SCL Description
“out "ouT” out := <Boolean In FBD programming, LAD coils are transformed into as-
— = expression>; signment (= and /=) boxes where you specify a bit address
- = for the box output. Box inputs and outputs can be connec-
— ted to other box logic or you can enter a bit address.
ouT “ouT out :=)
—/— - NOT <Boolean Yqu c?n fpemfy.an immediate write of a plr?ysmal ou't|put
_ L expression>; using P followmg the prfset (example: %Q3.4:P). For
an immediate write, the bit data values are written to the
"ouT process image output and directly to physical output.
- O

Table 8-7 Data types for the parameters

Parameter Data type Description
ouT Bool Assigned bit

e |f there is power flow through an output coil or an FBD "=" box is enabled, then the output
bit is set to 1.

e |fthere is no power flow through an output coil or an FBD "=" assignment box is not enabled,
then the output bit is set to 0.

e |[fthere is power flow through an inverted output coil or an FBD "/=" box is enabled, then the
output bit is set to 0.

e |[f there is no power flow through an inverted output coil or an FBD "/=" box is not enabled,
then the output bit is set to 1.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 209

Basic instructions

8.1 Bit logic operations

8.1.2

Set and reset instructions

Set and Reset 1 bit

Table 8-8 S and R instructions

LAD FBD SCL Description

Ut "ouT" Not available Set output:

G 5 When S (Set) is activated, then the data value at the OUT ad-
—{S— "IN — ~ dress is set to 1. When S is not activated, OUT is not
changed.

Ut "ouT” Not available Reset output:

—{R}— R When R (Reset) is activated, then the data value at the OUT
VN = - address is set to 0. When R s not activated, OUT is not changed.

' For LAD and FBD: These instructions can be placed anywhere in the network.
2 For SCL: You must write code to replicate this function within your application.

Table 8-9 Data types for the parameters
Parameter Data type Description
IN (or connect to contact/gate logic) Bool Bit tag of location to be monitored
ouT Bool Bit tag of location to be set or reset

Set and Reset Bit Field

Table 8-10 SET_BF and RESET_BF instructions
LAD! FBD SCL Description
"oyt "ouT” Not available Set bit field:
—{SET_BFH SET_BF When SET_BF is activated, a data value of 1 is assigned to "n"
- — EN bits starting at address tag OUT. When SET_BF is not activated,
"n" M OUT is not changed.
"oy "auT Not available Reset bit field:
RESET_BF RESET_BF writes a data value of 0 to "n" bits starting at address
—{ RESET_EF) —EN tag OUT. When RESET_BF is not activated, OUT is not
"n' N changed.

' For LAD and FBD: These instructions must be the right-most instruction in a branch.
2 For SCL: You must write code to replicate this function within your application.

Table 8-11 Data types for the parameters
Parameter Data type Description
ouT Bool Starting element of a bit field to be set or reset (Example:
#MyArray[3])
n Constant (UInt) Number of bits to write
S7-1200 Programmable controller
210 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.1 Bit logic operations

Set-dominant and Reset-dominant flip-flops

Table 8-12 RS and SR instructions

LAD / FBD SCL Description
"IouT Not available Reset/set flip-flop:
RS RS is a set dominant latch where the set dominates. If the set (S1) and reset (R)
=R Q= signals are both true, the value at address INOUT will be 1.
=51
"IouUT" Not available Set/reset flip-flop:
SR SR is a reset dominant latch where the reset dominates. If the set (S) and reset
b U= (R1) signals are both true, the value at address INOUT will be 0.
-PR1

' For LAD and FBD: These instructions must be the right-most instruction in a branch.

2 For SCL: You must write code to replicate this function within your application.

Table 8-13 Data types for the parameters

Parameter Data type Description

S, S1 Bool Set input; 1 indicates dominance
R, R1 Bool Reset input; 1 indicates dominance
INOUT Bool Assigned bit tag "INOUT"

Q Bool Follows state of "INOUT" bit

The "INOUT" tag assigns the bit address that is set or reset. The optional output Q follows the
signal state of the "INOUT" address.

Instruction

RS

SR

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 211

S1 R "INOUT" bit

0 0 Previous state
0 1 0

1 0 1

1 1 1

S R1

0 0 Previous state
0 1 0

1 0 1

1 1 0

Basic instructions

8.1 Bit logic operations

8.1.3

Table 8-14

Positive and negative edge instructions

Positive and negative transition detection

LAD

FBD

SCL

Description

ME

—iP
"M_BIT"

“lN“

P

"M_BIT"

Not available '

Scan operand for positive signal edge.

LAD: The state of this contact is TRUE when a positive transition (OFF-to-
ON) is detected on the assigned "IN" bit. The contact logic state is then
combined with the power flow in state to set the power flow out state. The
P contact can be located anywhere in the network except the end of a
branch.

FBD: The output logic state is TRUE when a positive transition (OFF-to-
ON) is detected on the assigned input bit. The P box can only be located
at the beginning of a branch.

“lN”

—Np-
"M_BIT"

Iy

"M_BIT"

Not available '

Scan operand for negative signal edge.

LAD: The state of this contact is TRUE when a negative transition (ON-to-
OFF) is detected on the assigned input bit. The contact logic state is then
combined with the power flow in state to set the power flow out state. The
N contact can be located anywhere in the network except the end of a
branch.

FBD: The output logic state is TRUE when a negative transition (ON-to-
OFF) is detected on the assigned input bit. The N box can only be located
at the beginning of a branch.

|||:|L|T||

—(P
"M_BIT"

|||:|L|T||

P=

"M_BIT"

Not available '

Set operand on positve signal edge.

LAD: The assigned bit "OUT" is TRUE when a positive transition (OFF-to-
ON) is detected on the power flow entering the coil. The power flow in
state always passes through the coil as the power flow out state. The P
coil can be located anywhere in the network.

FBD: The assigned bit "OUT" is TRUE when a positive transition (OFF-to-
ON) is detected on the logic state at the box input connection or on the
input bit assignment if the box is located at the start of a branch. The input
logic state always passes through the box as the output logic state. The
P= box can be located anywhere in the branch.

"guT"

—(N
"M_BIT"

|||:|L|T||

"M_BIT"

Not available '

Set operand on negative signal edge.

LAD: The assigned bit "OUT" is TRUE when a negative transition (ON-to-
OFF) is detected on the power flow entering the coil. The power flow in

state always passes through the coil as the power flow out state. The N

coil can be located anywhere in the network.

FBD: The assigned bit"OUT" is TRUE when a negative transition (ON-to-
OFF) is detected on the logic state at the box input connection or on the
input bit assignment if the box is located at the start of a branch. The input
logic state always passes through the box as the output logic state. The
N= box can be located anywhere in the branch.

' For SCL: You must write code to replicate this function within your application.

212

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.1 Bit logic operations

Table 8-15 P_TRIG and N_TRIG

LAD / FBD SCL Description
P TRIG Not available ' Scan RLO (result of logic operation) for positve signal edge.
— ELK_ O — The Q output power flow or logic state is TRUE when a positive transition
"M BIT" (OFF-to-ON) is detected on the CLK input state (FBD) or CLK power flow
- in (LAD).

In LAD, the P_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the P_TRIG instruction can be located anywhere
except the end of a branch.

N TRIG Not available ' Scan RLO for negative signal edge.
— CLE ok The Q output power flow or logic state is TRUE when a negative transition
A BIT" (ON-to-OFF) is detected on the CLK input state (FBD) or CLK power flow
- in (LAD).

In LAD, the N_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the N_TRIG instruction can be located anywhere
except the end of a branch.

' For SCL: You must write code to replicate this function within your application.

Table 8-16 R_TRIG and F_TRIG instructions

LAD / FBD SCL Description
"F_TRIG_DE" "R_TRIG DB" (Set tag on positive signal edge.
F_TRIG CLK: =_in_,

The assigned instance DB is used to store the previous state of the CLK
input. The Q output power flow or logic state is TRUE when a positive
LK Qr transition (OFF-to-ON) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).

EN ENG — Q=> bool out);

In LAD, the R_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the R_TRIG instruction can be located anywhere
except the end of a branch.

"F_TRIG_DE_1" "F_TRIG_DB" (Set tag on negative signal edge.

F_TRIG CLK:=_in_, The assigned instance DB is used to store the previous state of the CLK
EN ENO — 0=> _bool out)i linput. The Q output power flow or logic state is TRUE when a negative
LK ol transition (ON-to-OFF) is detected on the CLK input state (FBD) or CLK
power flow in (LAD).

In LAD, the F_TRIG instruction cannot be located at the beginning or end
of a network. In FBD, the F_TRIG instruction can be located anywhere
except the end of a branch.

For R_TRIG and F_TRIG, when you insert the instruction in the program, the "Call options"
dialog opens automatically. In this dialog you can assign

whether the edge memory bit is stored in its own data block (single instance) or as a local tag
(multiple instance) in the

block interface. If you create a separate data block, you will find it in the project tree in the

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 213

Basic instructions

8.1 Bit logic operations

"Program resources" folder
under "Program blocks > System blocks".

Table 8-17 Data types for the parameters (P and N contacts/coils, P=, N=, P_TRIG and N_TRIG)

Parameter

Data type Description

M_BIT

Bool Memory bit in which the previous state of the input is saved

IN

Bool Input bit whose transition edge is detected

ouT

Bool Output bit which indicates a transition edge was detected

CLK

Bool Power flow or input bit whose transition edge is detected

Q

Bool Output which indicates an edge was detected

214

All edge instructions use a memory bit (M_BIT: P/N contacts/coils, P_TRIG/N_TRIG) or
(instance DB bit: R_TRIG, F_TRIG) to store the previous state of the monitored input signal. An
edge is detected by comparing the state of the input with the previous state. If the states
indicate a change of the input in the direction of interest, then an edge is reported by writing the
output TRUE. Otherwise, the output is written to FALSE.

Note

Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory bit
in your program design either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use a
unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by other
system functions, such as an 1/O update. Use only M, global DB, or Static memory (in an
instance DB) for M_BIT memory assignments.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.2 Timer operations

8.2 Timer operations

You use the timer instructions to create programmed time delays. The number of timers that
you can use in your user program is limited only by the amount of memory in the CPU. Each
timer uses a 16 byte IEC_Timer data type DB structure to store timer data that is specified at
the top of the box or coil instruction. STEP 7 automatically creates the DB when you insert the
instruction.

Table 8-18 Timer instructions

LAD / FBD boxes LAD coils SCL Description
IEC_Timer_0 TP_DB "IEC_Timer_ 0 _DB".TP(The TP timer generates a pulse with a preset width
R —{TP— IN:= bool in , time.
Time "PRESET_Tag" PT: =:time:in:,
—IN) Q=> bool out_,
il £ ET=> time out);
IEC_Timer_1 TON_DE "IEC_Timer 0_DB".TON (The TON timer sets output Q to ON after a preset
T ton] —{TOH }— IN:= bool_in_, time delay.
Time “PRESET_Tag" PT:= time in_,
- N 0= Q=> bool_out_,
FT ET ET=> time out);
IEC_Timer_2 TOF_DB "IEC_Timer_ 0 _DB".TOF (The TOF timer resets output Q to OFF after a preset
ToF —{ TOF }— IN:= bool in_, time delay.
Time "PRESET_Tag" PT:= time in_,
I) Q=> bool out_,
FT ET ET=>_ time_out);
IEC_Timer_3 TOMR_DE "IEC_Timer O DB".TONR (|The TONR timer sets output Q to ON after a preset
TOMR —{ TONR }— IN:= bool_in , time delay. Elapsed time is accumulated over mul-
Time "PRESET_Tag” R:= bool in , tiple timing periods until the R input is used to reset
IM Q- PT:= time_in_, the elapsed time.
R ET Q=> bool_out_,
FT ET=>_time out_);
FBD only: TOM_DB PRESET TIMER (The PT (Preset timer) coil loads a new PRESET
—AFT}— PT:= time_in_, time value in the specified IEC_Timer.
FT “PRESET_Tag"
] or TIMER:= iec_timer_in);
FBD only: TON_DE RESET_ TIMER (The RT (Reset timer) coil resets the specified

—{ R _iec_timer_in); IEC_Timer.

RT

' STEP 7 automatically creates the DB when you insert the instruction.
2 Inthe SCL examples, "IEC_Timer_0_DB" is the name of the instance DB.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 215

Basic instructions

8.2 Timer operations

Table 8-19 Data types for the parameters
Parameter Data type Description
Box: IN Bool TP, TON, and TONR:

Coil: Power flow

Box: 0=Disable timer, 1=Enable timer

Coil: No power flow=Disable timer, Power flow=Enable timer
TOF:

Box: O=Enable timer, 1=Disable timer

Coil: No power flow=Enable timer, Power flow=Disable timer

R Bool TONR box only:
0=No reset
1= Reset elapsed time and Q bit to 0
Box: PT Time Timer box or coil: Preset time input
Coil: "PRESET_Tag"
Box: Q Bool Timer box: Q box output or Q bit in the timer DB data
Coil: DBdata.Q Timer coil: you can only address the Q bit in the timer DB data
Box: ET Time Timer box: ET (elapsed time) box output or ET time value in the timer DB data

Coil: DBdata.ET

Timer coil: you can only address the ET time value in the timer DB data.

Table 8-20 Effect of value changes in the PT and IN parameters
Timer Changes in the PT and IN box parameters and the corresponding coil parameters
TP ® Changing PT has no effect while the timer runs.
® Changing IN has no effect while the timer runs.
TON ® Changing PT has no effect while the timer runs.
® Changing IN to FALSE, while the timer runs, resets and stops the timer.
TOF ® Changing PT has no effect while the timer runs.
e Changing IN to TRUE, while the timer runs, resets and stops the timer.
TONR e Changing PT has no effect while the timer runs, but has an effect when the timer resumes.
e Changing IN to FALSE, while the timer runs, stops the timer but does not reset the timer. Changing IN
back to TRUE will cause the timer to start timing from the accumulated time value.
PT (preset time) and ET (elapsed time) values are stored in the specified IEC_TIMER DB data
as signed double integers that represent milliseconds of time. TIME data uses the T# identifier
and can be entered as a simple time unit (T#200ms or 200) and as compound time units like
T#2s_200ms.
Table 8-21 Size and range of the TIME data type
Data type Size Valid number ranges'
TIME 32 bits, stored T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms
as Dint data Stored as -2,147,483,648 ms to +2,147,483,647 ms

' The negative range of the TIME data type shown above cannot be used with the timer instructions. Negative PT (preset time)
values are set to zero when the timer instruction is executed. ET (elapsed time) is always a positive value.

216

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.2 Timer operations

Timer coil example

The -(TP)-, -(TON)-, -(TOF)-, and -(TONR)- timer coils must be the last instruction in a LAD
network. As shown in the timer example, a contact instruction in a subsequent network
evaluates the Q bit in a timer coil's IEC_Timer DB data. Likewise, you must address the
ELAPSED element in the IEC_timer DB data if you want to use the elapsed time value in your

program.
"DB1".MyIEC_
"Tag_Input" Timer
{ | {TP —
| "Tag_Time"

The pulse timer is started on a 0 to 1 transition of the Tag_Input bit value. The timer runs for the
time specified by Tag_Time time value.

"OB1".MylEC_
Timer.0) "Tag_Output”

] 1 I
LI | LI

As long as the timer runs, the state of DB1.MylEC_Timer.Q=1 and the Tag_Output value=1.
When the Tag_Time value has elapsed, then DB1.MylEC_Timer.Q=0 and the Tag_Output
value=0.

Reset timer -(RT)- and Preset timer -(PT)- coils

These coil instructions can be used with box or coil timers and can be placed in a mid-line
position. The coil output power flow status is always the same as the coil input status. When the
-(RT)- coil is activated, the ELAPSED time element of the specified IEC_Timer DB data is reset
to 0. When the -(PT)- coil is activated, the PRESET time element of the specified IEC_Timer DB
data is loaded with the assigned time-duration value..

Note

When you place timer instructions in an FB, you can select the "Multi-instance data block"
option. The timer structure names can be different with separate data structures, but the timer
data is contained in a single data block and does not require a separate data block for each
timer. This reduces the processing time and data storage necessary for handling the timers.
There is no interaction between the timer data structures in the shared multi-instance DB.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 217

Basic instructions

8.2 Timer operations

Operation of the timers

Table 8-22 Types of IEC timers

The TON timer sets output Q to ON after a preset time
delay.

Timer Timing diagram
TP: Generate pulse IN
The TP timer generates a pulse with a preset width time. _I—l |—|_|-| I—I_
ET
PT___/_ /‘ /—L
Q
PT PT
TON: Generate ON-delay IN

The TONR timer sets output Q to ON after a preset time
delay. Elapsed time is accumulated over multiple timing
periods until the R input is used to reset the elapsed time.

ET
PTA 4/7
Q PT | PT
TOF: Generate OFF-delay IN
The TOF timer resets output Q to OFF after a preset time |_|
delay. I
ET
PTT [
Q
T |ﬂ
TONR: Time accumulator IN 4

ET/

218

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.2 Timer operations

Note

In the CPU, no dedicated resource is allocated to any specific timer instruction. Instead, each
timer utilizes its own timer structure in DB memory and a continuously-running internal CPU
timer to perform timing.

When a timer is started due to an edge change on the input of a TP, TON, TOF, or TONR
instruction, the value of the continuously-running internal CPU timer is copied into the START
member of the DB structure allocated for this timer instruction. This start value remains
unchanged while the timer continues to run, and is used later each time the timer is updated.
Each time the timer is started, a new start value is loaded into the timer structure from the
internal CPU timer.

When a timer is updated, the start value described above is subtracted from the current value
of the internal CPU timer to determine the elapsed time. The elapsed time is then compared
with the preset to determine the state of the timer Q bit. The ELAPSED and Q members are then
updated in the DB structure allocated for this timer. Note that the elapsed time is clamped at the
preset value (the timer does not continue to accumulate elapsed time after the preset is
reached).

A timer update is performed when and only when:
® A timer instruction (TP, TON, TOF, or TONR) is executed
® The "ELAPSED" member of the timer structure in DB is referenced directly by an instruction

® The "Q" member of the timer structure in DB is referenced directly by an instruction

Timer programming

The following consequences of timer operation should be considered when planning and
creating your user program:

® You can have multiple updates of a timer in the same scan. The timer is updated each time
the timer instruction (TP, TON, TOF, TONR) is executed and each time the ELAPSED or Q
member of the timer structure is used as a parameter of another executed instruction. This
is an advantage if you want the latest time data (essentially an immediate read of the timer).
However, if you desire to have consistent values throughout a program scan, then place
your timer instruction prior to all other instructions that need these values, and use tags from
the Q and ET outputs of the timer instruction instead of the ELAPSED and Q members of the
timer DB structure.

® You can have scans during which no update of a timer occurs. It is possible to start your
timer in a function, and then cease to call that function again for one or more scans. If no
other instructions are executed which reference the ELAPSED or Q members of the timer
structure, then the timer will not be updated. A new update will not occur until either the timer
instruction is executed again or some other instruction is executed using ELAPSED or Q
from the timer structure as a parameter.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 219

Basic instructions

8.2 Timer operations

Although not typical, you can assign the same DB timer structure to multiple timer
instructions. In general, to avoid unexpected interaction, you should only use one timer
instruction (TP, TON, TOF, TONR) per DB timer structure.

Self-resetting timers are useful to trigger actions that need to occur periodically. Typically,
self-resetting timers are created by placing a normally-closed contact which references the
timer bit in front of the timer instruction. This timer network is typically located above one or
more dependent networks that use the timer bit to trigger actions. When the timer expires
(elapsed time reaches preset value), the timer bit is ON for one scan, allowing the
dependent network logic controlled by the timer bit to execute. Upon the next execution of
the timer network, the normally closed contact is OFF, thus resetting the timer and clearing
the timer bit. The next scan, the normally closed contact is ON, thus restarting the timer.
When creating self-resetting timers such as this, do not use the "Q" member of the timer DB
structure as the parameter for the normally-closed contact in front of the timer instruction.
Instead, use the tag connected to the "Q" output of the timer instruction for this purpose. The
reason to avoid accessing the Q member of the timer DB structure is because this causes
an update to the timer and if the timer is updated due to the normally closed contact, then
the contact will reset the timer instruction immediately. The Q output of the timer instruction
will not be ON for the one scan and the dependent networks will not execute.

Time data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the timer data stored in the previous run mode session is lost, unless
the timer data structure is specified as retentive (TP, TON, TOF, and TONR timers).

When you accept the defaults in the call options dialog after you place a timer instruction in the
program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your timer data retentive, you must either use a global DB or a Multi-instance
DB.

220

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.2 Timer operations

Assign a global DB to store timer data as retentive data

This option works regardless of where the timer is placed (OB, FC, or FB).

1.

Create a global DB:

— Double-click "Add new block" from the Project tree
— Click the data block (DB) icon

— For the Type, choose global DB

— If you want to be able to select individual data elements in this DB as retentive, be sure
the DB type "Optimized" box is checked. The other DB type option "Standard -
compatible with S7-300/400" only allows setting all DB data elements retentive or none
retentive.

— Click OK

. Add timer structure(s) to the DB:

— In the new global DB, add a new static tag using data type IEC_Timer.
— In the "Retain" column, check the box so that this structure will be retentive.

— Repeat this process to create structures for all the timers that you want to store in this DB.
You can either place each timer structure in a unique global DB, or you can place multiple
timer structures into the same global DB. You can also place other static tags besides
timers in this global DB. Placing multiple timer structures into the same global DB allows
you to reduce your overall number of blocks.

— Rename the timer structures if desired.

Open the program block for editing where you want to place a retentive timer (OB, FC, or
FB).

Place the timer instruction at the desired location.

5. When the call options dialog appears, click the cancel button.

On the top of the new timer instruction, type the name (do not use the helper to browse) of
the global DB and timer structure that you created above (example:
"Data_block_3.Static_1").

Assign a multi-instance DB to store timer data as retentive data

This option only works if you place the timer in an FB.

This option depends upon whether the FB properties specify "Optimized block access" (allows
symbolic access only). To verify how the access attribute is configured for an existing FB, right-
click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 221

Basic instructions

8.2 Timer operations

222

Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure appears
in the FB Interface under Static.

If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

7. Under Static, locate the timer structure that was just created for you.

In the Retain column for this timer structure, change the selection to "Retain". Whenever this
FB is called later from another program block, an instance DB will be created with this
interface definition which contains the timer structure marked as retentive.

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1.
2.
3.

Open the FB for edit.
Place the timer instruction at the desired location in the FB.

When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

In the Call options dialog, rename the timer if desired.

5. Click OK. The timer instruction appears in the editor, and the IEC_TIMER structure appears

in the FB Interface under Static.
Open the block that will use this FB.

Place this FB at the desired location. Doing so results in the creation of an instance data
block for this FB.

8. Open the instance data block created when you placed the FB in the editor.

9. Under Static, locate the timer structure of interest. In the Retain column for this timer

structure, check the box to make this structure retentive.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.3

Counter operations

8.3 Counter operations

Table 8-23 Counter instructions
LAD /FBD SCL Description
"Caunter name" "IEC Counter_ 0 DB".CT Use the counter instructions to count internal program events and ex-
T U (ternal process events. Each counter uses a structure stored in a data
Int CU:= bool_in, block to maintain counter data. You assign the data block when the
ey - R:= bool_in, counter instruction is placed in the editor.
—F cv PV:=_in, e CTU is a count-up counter
; Q=> bool_out,
2 cv=> out) ; e CTD is a count-down counter
I — "IEC Counter 0 DB".CT e CTUD is a count-up-and-down counter
CTD D(
Int CD:= bool_in,
e oF ;r;:=_l?ool_1n ,
—LD oV PRy
. Q=> bool out,
PV — —
CV=> out) ;
"IEC_Counter_0 DB".CTU

"Counter narme"

CTuD
Int
b N Q-
b K] oD =
—R o
=L
F

D(

CU:= _bool_in,
CD:= bool_in,
R:= bool_in,
LD:= bool_in,
PV:= in_,

QU=> bool_out,
QD=> bool out,
Cv=> out_);

' For LAD and FBD: Select the count value data type from the drop-down list below the instruction name.

2 STEP 7 automatically creates the DB when you insert the instruction.

3 In the SCL examples, "IEC_Counter_0_DB" is the name of the instance DB.

Table 8-24 Data types for the parameters
Parameter Data type! Description
CU, CD Bool Count up or count down, by one count
R (CTU, CTUD) Bool Reset count value to zero
LD (CTD, CTUD) Bool Load control for preset value

PV

Sint, Int, DInt, USInt, Uint, UDInt

Preset count value

Q, QU Bool True if CV >= PV
QD Bool True if CV <=0
cv Sint, Int, DInt, USInt, Uint, UDInt Current count value

' The numerical range of count values depends on the data type you select. If the count value is an unsigned integer type, you
can count down to zero or count up to the range limit. If the count value is a signed integer, you can count down to the
negative integer limit and count up to the positive integer limit.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

223

Basic instructions

8.3 Counter operations

The number of counters that you can use in your user program is limited only by the amount of
memory in the CPU. Counters use the following amount of memory:

® For Sint or USInt data types, the counter instruction uses 3 bytes.
e For Int or UInt data types, the counter instruction uses 6 bytes.
® For Dint or UDInt data types, the counter instruction uses 12 bytes.

These instructions use software counters whose maximum counting rate is limited by the
execution rate of the OB in which they are placed. The OB that the instructions are placed in
must be executed often enough to detect all transitions of the CU or CD inputs. For faster
counting operations, see the CTRL_HSC instruction (Page 515).

Note

When you place counter instructions in an FB, you can select the multi-instance DB option, the
counter structure names can be different with separate data structures, but the counter data is
contained in a single DB and does not require a separate DB for each counter. This reduces the
processing time and data storage necessary for the counters. There is no interaction between
the counter data structures in the shared multi-instance DB.

Operation of the counters

Table 8-25 Operation of CTU (count up)

Counter

Operation

The CTU counter counts up by 1 when the value of parameter CU changes
from 0 to 1. The CTU timing diagram shows the operation for an unsigned | cu _I_I 1 [I—I
integer count value (where PV = 3).

1 1 1
e |f the value of parameter CV (current count value) is greater than or R ; T .
1 1 1
equal to the value of parameter PV (preset count value), then the 1 1 1 4
1 1 .
counter output parameter Q = 1. 1 1
1
e |f the value of the reset parameter R changes from 0 to 1, then the !
current count value is reset to 0. cv 0

I:I

Table 8-26 Operation of CTD (count down)

Counter

Operation

The CTD counter counts down by 1 when the value of parameter _I_LI'I_I'l m |—|_|—|
CD changes from 0 to 1. The CTD timing diagram shows the CD

1
operation for an unsigned integer count value (where PV =3). | | . X
e |f the value of parameter CV (current count value) is equal to ! E

or less than 0, the counter output parameter Q = 1. I 2! —|_2
e |f the value of parameter LOAD changes from 0 to 1, the oV | 1 1 0

value at parameter PV (preset value) is loaded to the counter | !

as the new CV (current count value). . . .

o

224

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.3 Counter operations

Table 8-27 Operation of CTUD (count up and down)

Counter Operation

The CTUD counter counts up or cu M1 |_|_r| |_| 1

down by 1 on the 0 to 1 transition

of the count up (CU) or count

down (CD) inputs. The CTUD tim-| CD
ing diagram shows the operation
for an unsigned integer count val-

ue (where PV = 4).

e |f the value of parameter CV
is equal to or greater than the | LOAD
value of parameter PV, then
the counter output parameter
Qu =1.

i

e |f the value of parameter CV
is less than or equal to zero,
then the counter output

—
0
parameter QD = 1. Qu | | l
——

Ccv

e |f the value of parameter
LOAD changes from 0 to 1, QDb _l
then the value at parameter
PV is loaded to the counter as
the new CV.

® |f the value of the reset
parameter R is changes from
0to 1, the current count value
is reset to 0.

Counter data retention after a RUN-STOP-RUN transition or a CPU power cycle

If a run mode session is ended with stop mode or a CPU power cycle and a new run mode
session is started, then the counter data stored in the previous run mode session is lost, unless
the counter data structure is specified as retentive (CTU, CTD, and CTUD counters).

When you accept the defaults in the call options dialog after you place a counter instruction in
the program editor, you are automatically assigned an instance DB which cannot be made
retentive. To make your counter data retentive, you must either use a global DB or a Multi-
instance DB.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 225

Basic instructions

8.3 Counter operations

Assign a global DB to store counter data as retentive data

This option works regardless of where the counter is placed (OB, FC, or FB).

1.

Create a global DB:

— Double-click "Add new block" from the Project tree
— Click the data block (DB) icon

— For the Type, choose global DB

— If you want to be able to select individual items in this DB as retentive, be sure the
symbolic-access-only box is checked.

— Click OK
Add counter structure(s) to the DB:

— Inthe new global DB, add a new static tag using one of the counter data types. Be sure
to consider the Type you want to use for your Preset and Count values.

— In the "Retain" column, check the box so that this structure will be retentive.

— Repeat this process to create structures for all the counters that you want to store in this
DB. You can either place each counter structure in a unique global DB, or you can place
multiple counter structures into the same global DB. You can also place other static tags
besides counters in this global DB. Placing multiple counter structures into the same
global DB allows you to reduce your overall number of blocks.

— Rename the counter structures if desired.

Open the program block for editing where you want to place a retentive counter (OB, FC, or
FB).

Place the counter instruction at the desired location.

5. When the call options dialog appears, click the cancel button. You should now see a new

counter instruction which has "???" both just above and just below the instruction name.

6. On the top of the new counter instruction, type the name (do not use the helper to browse)
of the global DB and counter structure that you created above (example:
"Data_block_3.Static_1"). This causes the corresponding preset and count value type to be
filled in (example: Ulnt for an IEC_UCounter structure).

Counter Data Type Corresponding Type for the Preset and Count Values
IEC_Counter INT
IEC_SCounter SINT
IEC_DCounter DINT
IEC_UCounter UINT
IEC_USCounter USINT
IEC_UDCounter UDINT

Assign a multi-instance DB to store counter data as retentive data

This option only works if you place the counter in an FB.

226

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.3 Counter operations

This option depends upon whether the FB properties specify "Optimized block access" (allows
symbolic access only). To verify how the access attribute is configured for an existing FB, right-
click on the FB in the Project tree, choose properties, and then choose Attributes.

If the FB specifies "Optimized block access" (allows symbolic access only):
1. Open the FB for edit.
2. Place the counter instruction at the desired location in the FB.

3. When the Call options dialog appears, click on the Multi instance icon. The Multi Instance
option is only available if the instruction is being placed into an FB.

4. In the Call options dialog, rename the counter if desired.

5. Click OK. The counter instruction appears in the editor with type INT for the preset and count
values, and the IEC_COUNTER structure appears in the FB Interface under Static.

6. If desired, change the type in the counter instruction from INT to one of the other types. The
counter structure will change correspondingly.

7. If necessary, open the FB interface editor (may have to click on the small arrow to expand
the view).

8. Under Static, locate the counter structure that was just created for you.

9. In the Retain column for this counter structure, change the selection to "Retain". Whenever
this FB is called later from another program block, an instance DB will be created with this
interface definition which contains the counter structure marked as retentive.

If the FB does not specify "Optimized block access", then the block access type is standard,
which is compatible with S7-300/400 classic configurations and allows symbolic and direct
access. To assign a multi-instance to a standard block access FB, follow these steps:

1. Open the FB for edit.
2. Place the counter instruction at the desired location in the FB.

3. When the Call options dialog appears, click on the multi instance icon. The multi instance
option is only available if the instruction is being placed into an FB.

4. In the Call options dialog, rename the counter if desired.

5. Click OK. The counter instruction appears in the editor with type INT for the preset and count
value, and the IEC_COUNTER structure appears in the FB Interface under Static.

6. If desired, change the type in the counter instruction from INT to one of the other types. The
counter structure will change correspondingly.

7. Open the block that will use this FB.

8. Place this FB at the desired location. Doing so results in the creation of an instance data
block for this FB.

9. Open the instance data block created when you placed the FB in the editor.

10.Under Static, locate the counter structure of interest. In the Retain column for this counter
structure, check the box to make this structure retentive.

Type shown in counter instruction (for preset Corresponding structure Type shown in FB in-
and count values) terface

INT IEC_Counter

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 227

Basic instructions

8.4 Comparator operations

SINT IEC_SCounter
DINT IEC_DCounter
UINT IEC_UCounter
USINT IEC_USCounter
UDINT IEC_UDCounter
8.4 Comparator operations
8.4.1 Compare values instructions
Table 8-28 Compare instructions
LAD FBD SCL Description
"IN — out := inl = in2; Compares two values of the same data type. When the
I == | Eyte or LAD contact comparison is TRUE, then the contact is
Byte MINT = INT IF inl = in2 activated. When the FBD box comparison is TRUE, then
"Mz
N2~ IN2 — THEN out := 1; |the box outputis TRUE.
ELSE out := 0;
END_IF;

' For LAD and FBD: Click the instruction name (such as "==") to change the comparison type from the drop-down list. Click

the "???" and select data type from the drop-down list.

Table 8-29 Data types for the parameters

Parameter Data type Description

IN1, IN2 Byte, Word, DWord, Sint, Int, Dint, USInt, Uint, UDInt, Real, Values to compare
LReal, String, WString, Char, Char, Time, Date, TOD, DTL, Con-
stant

Table 8-30 Comparison descriptions

Relation type The comparison is true if ...
= IN1 is equal to IN2
<> IN1 is not equal to IN2
>= IN1 is greater than or equal to IN2
<= IN1 is less than or equal to IN2
> IN1 is greater than IN2
< IN1 is less than IN2

S7-1200 Programmable controller
228 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.4 Comparator operations

8.4.2 IN_Range (Value within range) and OUT_Range (Value outside range)
Table 8-31 Value within Range and value outside range instructions
LAD / FBD SCL Description
I RAMGE out := IN_RANGE (min, Tests whether an input value is in or out of a specified value range.
7 val, max); If the comparison is TRUE, then the box output is TRUE.
(M
VAL
AKX
SUT RAMGE out := OUT_RANGE (min,
K val, max);
(M
VAL
AKX

' For LAD and FBD: Click the "???" and select the data type from the drop-down list.

Table 8-32 Data types for the parameters

Parameter Data type' Description
MIN, VAL, MAX | Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Comparator inputs
Constant

' The input parameters MIN, VAL, and MAX must be the same data type.
® The IN_RANGE comparison is true if: MIN <= VAL <= MAX
® The OUT_RANGE comparison is true if: VAL < MIN or VAL > MAX

8.4.3 OK (Check validity) and NOT_OK (Check invalidity)
Table 8-33 OK (check validity) and Not OK (check invalidity) instructions
LAD FBD SCL Description
"Iy "I Not available Tests whether an input data reference is a valid real num-
— ok = oK ber according to IEEE specification 754.
"I "I Not available
—noT_oK |— MNOT_CK

' For LAD and FBD: When the LAD contact is TRUE, the contact is activated and passes power flow. When the FBD box is
TRUE, then the box output is TRUE.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 229

Basic instructions

8.4 Comparator operations

Table 8-34 Data types for the parameter
Parameter Data type Description
IN Real, LReal Input data
Table 8-35 Operation
Instruction The Real number test is TRUE if:
OK The input value is a valid real number '
NOT_OK The input value is not a valid real number !

' AReal or LReal value is invalid if it is +/- INF (infinity), NaN (Not a Number), or if it is a denormalized value. A denormalized
value is a number very close to zero. The CPU substitutes a zero for a denormalized value in calculations.

8.4.4

8.4.4.1

230

Variant and array comparison instructions

Equality and non-equality comparison instructions

The S7-1200 CPU provides instructions for querying the data type of a tag to which a Variant
operand points for either equality or non-equality to the data type of the other operand.

In addition, the S7-1200 CPU provides instructions for querying the data type of an array
element for either equality or non-equality to the data type of the other operand.

In these instructions, you are comparing <Operand1> to <Operand2>. <Operand1> must have
the Variant data type. <Operand2> can be an elementary data type of a PLC data type. In LAD
and FBD, <Operand1> is the operand above the instruction. In LAD, <Operand2> is the
operand below the instruction.

For all instructions, the result of logic operation (RLO) is 1 (true) if the equality or non-equality
test passes, and is 0 (false) if not.

The equality and non-equality type comparison instructions are as follows:
o EQ_Type (Compare data type for EQUAL with the data type of a tag)
o NE_Type (Compare data type for UNEQUAL with the data type of a tag)

¢ EQ_ElemType (Compare data type of an ARRAY element for EQUAL with the data type of
atag)

¢ NE_ElemType (Compare data type of an ARRAY element for UNEQUAL with the data type
of a tag)

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.4 Comparator operations

Table 8-36 EQ and NE instructions
LAD FBD SCL Description
#O0perand #0perand1 Not availa- | Tests whether the tag pointed to by the Variant
4 EQ_Type | EQ_Type ble at Operand1 is of the same data type as the tag
“Operand2® "Operand2” — IN2 ouT - at Operand2.
#0perand1 #Operand1 Not availa- | Tests whether the tag pointed to by the Variant
4 NE_Type | . . NE_Type ble at Operand1 is of a different data type as the tag
“Operand2* Operand2 IN2 ouTk- at Operand2.
#0perand? #0perand1 Not availa- | Tests whether the array element pointed to by
- EQ_ElemType |- EQ_ElemType ble the Variant at Operand1 is of the same data type
"Operand2” "Operand2” N2 ouT -
as the tag at Operand2.
#0perand1 #0perandi Not availa- | Tests whether the array element pointed to by
| NE_ElemType |- . NE_ElemType ble the Variant at Operand1 is of a different data
Operand2 Operand2” —{IN2 Sy type as the tag at Operand2.
Table 8-37 Data types for the parameters
Parameter Data type Description
Operand1 Variant First operand
Operand2 Bit strings, integers, floating-point numbers, | Second operand
timers, date and time, character strings, AR-
RAY, PLC data types
8442 Null comparsion instructions
You can use the instructions IS_NULL and NOT_NULL to determine whether or not the input
actually points to an object or not.
For both instructions, <Operand> must have the Variant data type.
Table 8-38 IS_NULL (Query for EQUALS ZERO pointer) and NOT_NULL (Query for EQUALS ZERO pointer) instructions
LAD FBD SCL Description
#0Dperand #0perand Not availa- | Tests whether the tag pointed to by the Variant
is_nuw IS_NULL ble at Operand is null and therefore not an object.
ouT-
#0perand #0perand Not availa- | Tests whether the tag pointed to by the Variant
4NOT_NULL } MOT_MULL ble at Operand is not null and therefore does point
ouT- to an object.
Table 8-39 Data types for the parameters
Parameter Data type Description
Operand Variant Operand to evaluate for null or not null.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

231

Basic instructions

8.5 Math functions

8.44.3 IS_ARRAY (Check for ARRAY)
You can use the "Check for ARRAY" instruction to query whether the Variant points to a tag of
the Array data type.

The <Operand> must have the Variant data type.

The instructions returns 1 (true) if the operand is an array.

Table 8-40 IS_ARRAY (Check for ARRAY)

LAD FBD SCL Description
#0perand #0perand IS_ARRAY (_variant_in_) Tests whether the tag pointed to by the Variant
 Is_aArRAY | ls_mn.grm at Operand is an array.

Table 8-41 Data types for the parameters

Parameter Data type Description

Operand Variant Operand to evaluate for whether it is an array.
8.5 Math functions

8.5.1 CALCULATE (Calculate)

Table 8-42 CALCULATE instruction

LAD / FBD SCL Description

CALCULATE Use the stand- | The CALCULATE instruction lets you create a math function that oper-
277 ard SCL math ates on inputs (IN1, IN2, .. INn) and produces the result at OUT, accord-
EM ENO expressions to | ing to the equation that you define.
QUT = <599 create the equa- | ¢ gSelect a data type first. All inputs and the output must be the same
tion. data type
INT ouT ype.
IN2:: ® To add another input, click the icon at the last input.
Table 8-43 Data types for the parameters
Parameter Data type!
IN1, IN2, ..INn Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord
ouT Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Byte, Word, DWord

' The IN and OUT parameters must be the same data type (with implicit conversions of the input parameters). For example:
A SINT value for an input would be converted to an INT or a REAL value if OUT is an INT or REAL

S7-1200 Programmable controller
232 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.5 Math functions

Click the calculator icon to open the dialog and define your math function. You enter your
equation as inputs (such as IN1 and IN2) and operations. When you click "OK" to save the
function, the dialog automatically creates the inputs for the CALCULATE instruction.

The dialog shows an example and a list of possible instructions that you can include based on
the data type of the OUT parameter:

Edit “Calculate” Instruction

ouT=-

Example:

(INT = IMZ) ™ (INT = INZ)

Possible instructions for Real:

+,= "I, Abg, Neg. Exp, **, Frac, Ln. Sin, ASin, Cos, ACos, Ten, ATan, Sqr. Sqrt. Round, Ceil, Floor, Trunc

[ok | cancel

Note

You also must create an input for any constants in your function. The constant value would then
be entered in the associated input for the CALCULATE instruction.

By entering constants as inputs, you can copy the CALCULATE instruction to other locations
in your user program without having to change the function. You then can change the values
or tags of the inputs for the instruction without modifying the function.

When CALCULATE is executed and all the individual operations in the calculation complete
successfully, then the ENO = 1. Otherwise, ENO = 0.

For an example of the CALCULATE instruction, see "Creating a complex equation with a simple
instruction (Page 41)".

8.5.2 Add, subtract, multiply and divide instructions
Table 8-44 Add, subtract, multiply and divide instructions
LAD / FBD SCL Description
out := inl + in2; |e ADD: Addition (IN1 + IN2 = OUT)
i out := inl - in2;
727 : . "2’ | e SUB: Subtraction (IN1 - IN2 = OUT)
out := inl * in2;
EN EMO=| out := inl / in2; |® MUL: Multiplication (IN1*IN2 = OUT)
1] el e DIV: Division (IN1/IN2 = OUT)
IN2sE

An Integer division operation truncates the fractional part of the quotient to
produce an integer output.

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 233

Basic instructions
8.5 Math functions

Table 8-45 Data types for the parameters (LAD and FBD)

Parameter Data type' Description
IN1, IN2 Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Constant Math operation inputs
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal Math operation output

' Parameters IN1, IN2, and OUT must be the same data type.

IM23¢ To add an ADD or MUL input, click the "Create" icon or right-click on an input stub
for one of the existing IN parameters and select the "Insert input" command.

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete” command.

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO =
1.

Table 8-46 ENO status

ENO Description
1 No error
0 The Math operation result value would be outside the valid number range of the data type selected. The least

significant part of the result that fits in the destination size is returned.

Division by 0 (IN2 = 0): The result is undefined and zero is returned.

Real/LReal: If one of the input values is NaN (not a number) then NaN is returned.

ADD Real/LReal: If both IN values are INF with different signs, this is an illegal operation and NaN is returned.

SUB Real/LReal: If both IN values are INF with the same sign, this is an illegal operation and NaN is returned.

MUL Real/LReal: If one IN value is zero and the other is INF, this is an illegal operation and NaN is returned.

o|ojlo|o|Oo|O

DIV Real/LReal: If both IN values are zero or INF, this is an illegal operation and NaN is returned.

8.5.3 MOD (return remainder of division)

Table 8-47 Modulo (return remainder of division) instruction

LAD / FBD SCL Description
won | out := inl MOD in2; You can use the MOD instruction to return the remainder of an integer
7 division operation. The value at the IN1 input is divided by the value at the
—EN EWO = IN2 input and the remainder is returned at the OUT output.
1M ouTt
{IN2

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller
234 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.5 Math functions
Table 8-48 Data types for parameters
Parameter Data type' Description
IN1 and IN2 Sint, Int, DInt, USInt, Uint, UDInt, Constant Modulo inputs
ouT Sint, Int, DInt, USInt, Ulnt, UDInt Modulo output

' The IN1, IN2, and OUT parameters must be the same data type.

Table 8-49 ENO values
ENO Description
1 No error
0 Value IN2 = 0, OUT is assigned the value zero
8.54 NEG (Create twos complement)
Table 8-50 NEG (create twos complement) instruction
LAD / FBD SCL Description
T NEG | - (in); The NEG instruction inverts the arithmetic sign of the value at parameter IN and stores the
™ | result in parameter OUT.
—EN END =
N our|

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8-51 Data types for parameters
Parameter Data type' Description
IN Sint, Int, DInt, Real, LReal, Constant Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output

' The IN and OUT parameters must be the same data type.

Table 8-52 ENO status
ENO Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.

Example for Sint: NEG (-128) results in +128 which exceeds the data type maximum.

S7-1200 Programmable controller

System Manual,

V4.4 11/2019, ASE02486680-AN

235

Basic instructions

8.5 Math functions

8.5.5

INC (Increment) and DEC (Decrement)

Table 8-53 INC and DEC instructions
LAD/FBD SCL Description
INC in_out := in out + 1; Increments a signed or unsigned integer number value:
m -
en Ena - IN_OUT value +1 = IN_OUT value
wour |
T in out := in out - 1; Decrements a signed or unsigned integer number value:
i -1=
en EL IN_OUT value - 1 = IN_OUT value
{IH/uT

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8-54 Data types for parameters
Parameter Data type Description
IN/OUT Sint, Int, DInt, USInt, Uint, UDInt Math operation input and output
Table 8-55 ENO status
ENO Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for Sint: INC (+127) results in +128, which exceeds the data type maximum.
8.5.6 ABS (Form absolute value)
Table 8-56 ABS (absolute value) instruction
LAD / FBD SCL Description
[AES out := ABS(in); Calculates the absolute value of a signed integer or real number at parameter IN
m and stores the result in parameter OUT.
—EM END —
{In ouT |

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

S7-1200 Programmable controller

236 System Manual, V4.4 11/2019, ASE02486680-AN

Basic instructions

8.5 Math functions
Table 8-57 Data types for parameters
Parameter Data type' Description
IN Sint, Int, DiInt, Real, LReal Math operation input
ouT Sint, Int, DInt, Real, LReal Math operation output
' The IN and OUT parameters must be the same data type.
Table 8-58 ENO status
ENO Description
1 No error
0 The math operation result value is outside the valid number range of the selected data type.
Example for Sint: ABS (-128) results in +128 which exceeds the data type maximum.
8.5.7 MIN (Get minimum) and MAX (Get maximum)
Table 8-59 MIN (get minimum) and MAX (get maximum) instructions
LAD / FBD SCL Description
I out:= MIN(The MIN instruction compares the value of two parameters IN1
o inl:= variant in , and IN2 and assigns the minimum (lesser) value to parameter
— in2:= variant _in_ OUT.
— EN EMO— [,...in32]);
1M ouT
IM2sE
bt out:= MAX(The MAX instruction compares the value of two parameters IN1
o inl:= variant in_, and IN2 and assigns the maximum (greater) value to parameter
— in2:= variant_in_ OUT.
— M 20 [,...in32]);
1M1 ouT
M2k
' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.
Table 8-60 Data types for the parameters
Parameter Data type! Description
IN1, IN2 Sint, Int, Dint, USInt, Uint, UDInt, Real, LReal, Time, Date, | Math operation inputs (up to 32 inputs)
[...IN32] TOD, Constant
ouT Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Time, Date, | Math operation output
TOD

' The IN1, IN2, and OUT parameters must be the same data type.

IN23¢ To add an input, click the "Create" icon or right-click on an input stub for one of the
existing IN parameters and select the "Insert input" command.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 237

Basic instructions
8.5 Math functions

To remove an input, right-click on an input stub for one of the existing IN parameters (when
there are more than the original two inputs) and select the "Delete" command.

Table 8-61 ENO status

ENO Description
1 No error
0 For Real data type only:

® At least one input is not a real number (NaN).
® The resulting OUT is +/- INF (infinity).

8.5.8 LIMIT (Set limit value)
Table 8-62 LIMIT (set limit value) instruction
LAD / FBD SCL Description
[En LIMIT (MN:=_variant_in_, The Limit instruction tests if the value of parameter IN is inside the
= —i B IN:= variant in_, value range specified by parameters MIN and MAX and if not,
M aur MX:= variant in_, clamps the value at MIN or MAX.
':x OUT:= variant out);

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8-63 Data types for the parameters

Parameter Data type! Description

MN, IN, and MX Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Time, Date, TOD- | Math operation inputs
Constant

ouT Sint, Int, DiInt, USInt, UInt, UDInt, Real, LReal, Time, Date, TOD | Math operation output

' The MN, IN, MX, and OUT parameters must be the same data type.

If the value of parameter IN is within the specified range, then the value of IN is stored in
parameter OUT. If the value of parameter IN is outside of the specified range, then the OUT
value is the value of parameter MIN (if the IN value is less than the MIN value) or the value of
parameter MAX (if the IN value is greater than the MAX value).

Table 8-64 ENO status

ENO Description

No error
0 Real: If one or more of the values for MIN, IN and MAX is NaN (Not a Number), then NaN is returned.
0 If MIN is greater than MAX, the value IN is assigned to OUT.

S7-1200 Programmable controller
238 System Manual, V4.4 11/2019, ASE02486680-AN

Basic instructions

8.5.9

8.5 Math functions

SCL examples:

MyVal := LIMIT(MN:=10,IN:=53, MX:=40); //Result: MyVal = 40
MyVal := LIMIT(MN:=10,IN:=37, MX:=40); //Result: MyVal = 37
MyVal := LIMIT(MN:=10,IN:=8, MX:=40); //Result: MyVal = 10

Exponent, logarithm, and trigonometry instructions

You use the floating point instructions to program mathematical operations using a Real or
LReal data type:

SQR: Form square (IN 2= OUT)

SQRT: Form square root (vVIN = OUT)

LN: Form natural logarithm (LN(IN) = OUT)

EXP: Form exponential value (e N=0UT), where base e = 2.71828182845904523536

EXPT: exponentiate (IN1 V2= OUT)

EXPT parameters IN1 and OUT are always the same data type, for which you must select
Real or LReal. You can select the data type for the exponent parameter IN2 from among
many data types.

FRAC: Return fraction (fractional part of floating point number IN = OUT)

SIN: Form sine value (sin(IN radians) = OUT)

ASIN: Form arcsine value (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
COS: Form cosine (cos(IN radians) = OUT)

ACOS: Form arccosine value (arccos(IN) = OUT radians), where the cos(OUT radians) = IN
TAN: Form tangent value (tan(IN radians) = OUT)

ATAN: Form arctangent value (arctan(IN) = OUT radians), where the tan(OUT radians) = IN

Table 8-65 Examples of floating-point math instructions

LAD / FBD SCL Description
T saR | out := SQR(in); Square: IN 2= OUT
Aed | or For example: If IN = 9, then OUT = 81.
T e out := in * in;
{1 ou |
v out := inl ** in2; General exponential: IN1 V2= OUT
lE':M 3 ?Er:u- For example: If IN1 = 3 and IN2 = 2, then OUT = 9.
;INI ouT |
{In2

' For LAD and FBD: Click the "???" (by the instruction name) and select a data type from the drop-down menu.

2 For SCL: You can also use the basic SCL math operators to create the mathematical expressions.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, ASE02486680-AN 239

Basic instructions

8.5 Math functions
Table 8-66 Data types for parameters
Parameter Data type Description
IN, IN1 Real, LReal, Constant Inputs
IN2 Sint, Int, DInt, USInt, UInt,UDInt, Real, LReal, Constant EXPT exponent input
ouT Real, LReal Outputs
Table 8-67 ENO status
ENO Instruction Condition Result (OUT)
1 All No error Valid result
0 SQR Result exceeds valid Real/LReal range +INF
IN is +/- NaN (not a number) +NaN
SQRT IN is negative -NaN
IN is +/- INF (infinity) or +/- NaN +/- INF or +/- NaN
LN IN is 0.0, negative, -INF, or -NaN -NaN
IN is +INF or +NaN +INF or +NaN
EXP Result exceeds valid Real/LReal range +INF
IN is +/- NaN +/- NaN
SIN, COS, TAN IN is +/- INF or +/- NaN +/- INF or +/- NaN
ASIN, ACOS IN is outside valid range of -1.0 to +1.0 +NaN
IN is +/- NaN +/- NaN
ATAN IN is +/- NaN +/- NaN
FRAC IN is +/- INF or +/- NaN +NaN
EXPT IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NaN if IN2 is Real/LReal,
-INF otherwise
IN1 or IN2 is +/- NaN +NaN
IN1 is 0.0 and IN2 is Real/LReal (only) +NaN
S7-1200 Programmable controller
240 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

8.6.1

8.6 Move operations

MOVE (Move value), MOVE_BLK (Move block), UMOVE_BLK (Move block

uninterruptible), and MOVE_BLK_VARIANT (Move block)

Use the Move instructions to copy data elements to a new memory address and convert from
one data type to another. The source data is not changed by the move process.

® The MOVE instruction copies a single data element from the source address specified by
the IN parameter to the destination addresses specified by the OUT parameter.

® The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter. The
COUNT specifies how many data elements are copied. The number of bytes per element
copied depends on the data type assigned to the IN and OUT parameter tag names in the

PLC tag table.
Table 8-68 MOVE, MOVE_BLK, UMOVE_BLK, and MOVE_BLK_VARIANT instructions
LAD /FBD SCL Description
MOWE outl := inj; Copies a data element stored at a specified ad-
—EM END— dress to a new address or multiple addresses."
I spOUTT
MOVE BLE MOVE_BLK (Interruptible move that copies a block of data el-
—EN EMO in:= variant_in, ements to a new address.
1M ouT count:= uint in,
COUNT out=> variant_out);
OMOVE_ELK UMOVE_BLK (Uninterruptible move that copies a block of data
—EM EMO = in:= variant_in, elements to a new address.
1M out count:= uint_in,
EOUNT out=> variant_out);
MOVE_BLK_VARIANT MOVE_BLK (Moves the contents of a source memory area to
-EN ENDI - SRC:=_variant_in, a destination memory area.
SRC Ret_Va = 3 3
COUNT DEST COUNT:= udint in, You can copy a complete array or elements of an
SRC INDEX:= dint in
SRC_INDEX — - — . ="’ |arraytoanother array of the same data type. The
DEST_INDEX DEST_INDEX:= dint _in, | ;o (number of elements) of source and desti-

DEST=> variant out);

nation array may be different. You can copy mul-
tiple or single elements within an array. You use
Variant data types to point to both the source and
destination arrays.

' MOVE instruction: To add another output in LAD or FBD, click the "Create" icon by the output parameter. For SCL, use
multiple assignment statements. You might also use one of the loop constructions.

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

241

Basic instructions

8.6 Move operations

Table 8-69 Data types for the MOVE instruction

Parameter Data type Description

IN Sint, Int, DInt, USInt, UInt, UDInt, Real, LReal, Byte, Word, Source address
DWord, Char, WChar, Array, Struct, DTL, Time, Date, TOD, IEC
data types, PLC data types

ouT Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal, Byte, Word, Destination address

DWord, Char, WChar, Array, Struct, DTL, Time, Date, TOD, IEC
data types, PLC data types

jt%ﬂl To add MOVE outputs, click the "Create" icon or right-click on an output stub for
one of the existing OUT parameters and select the "Insert output" command.

To remove an output, right-click on an output stub for one of the existing OUT parameters
(when there are more than the original two outputs) and select the "Delete" command.

Table 8-70 Data types for the MOVE_BLK and UMOVE_BLK instructions

Parameter Data type Description
IN Sint, Int, DInt, USInt, Ulnt, UDInt, Real, LReal Byte, Word, Source start address
DWord, Time, Date, TOD, WChar
COUNT Ulnt Number of data elements to copy
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, Destination start address
DWord, Time, Date, TOD, WChar

Table 8-71 Data types for the MOVE_BLK_VARIANT instruction

Parameter Data type Description

SRC Variant (which points to an array or individual array element) Source block from which to copy

COUNT UDInt Number of data elements to copy

SRC_INDEX Dint Zero-based index into the SRC array

DEST_INDEX Dint Zero-based index into the DEST array

RET_VAL Int Error information

DEST Variant (which points to an array or individualt array element) | Destination area into which to copy
the contents of the source block

Note

Rules for data copy operations

To copy the Bool data type, use SET_BF, RESET_BF, R, S, or output coil (LAD) (Page 210)
To copy a single elementary data type, use MOVE

To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK

To copy a structure, use MOVE

To copy a string, use S_MOVE (Page 329)

To copy a single character in a string, use MOVE

The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or structures
to the I, Q, or M memory areas.

S7-1200 Programmable controller
242 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:

® Interrupt events are queued and processed during MOVE_BLK execution. Use the
MOVE_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent. If
a MOVE_BLK operation is interrupted, then the last data element moved is complete and
consistent at the destination address. The MOVE_BLK operation is resumed after the
interrupt OB execution is complete.

® Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram. For more
information, see the section on data consistency (Page 181).

ENO is always true following execution of the MOVE instruction.

Table 8-72 ENO status

ENO Condition Result

1 No error All COUNT elements were successfully copied.

0 Either the source (IN) range or the destination (OUT) Elements that fit are copied. No partial elements
range exceeds the available memory area. are copied.

Table 8-73 Condition codes for the MOVE_BLK_VARIANT instruction

RET_VAL Description

(W#16#...)

0000 No error

80B4 Data types do not correspond.

8151 Access to the SRC parameter is not possible.

8152 The operand at the SRC parameter is an invalid type.

8153 Code generation error at the SRC parameter

8154 The operand at the SRC parameter has the data type Bool.

8281 The COUNT parameter has an invalid value.

8382 The value at the SRC_INDEX parameter is outside the limits of the
Variant.

8383 The value at parameter SRC_INDEX is outside the high limit of the
array.

8482 The value at the DEST_INDEX parameter is outside the limits of the
Variant.

8483 The value at parameter DEST_INDEX is outside the high limit of the
array.

8534 The DEST parameter is write-protected.

8551 Access to the DEST parameter is not possible.

8552 The operand at the DEST parameter is an invalid type.

8553 Code generation error at the DEST parameter

8554 The operand at the DEST parameter has the data type Bool.

*You can display error codes in the program editor as integer or hexadecimal values.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

243

Basic instructions

8.6 Move operations

8.6.2 Deserialize

You can use the "Deserialize" instruction to convert the sequential representation of a PLC data
type (UDT) back to a PLC data type and to fill its entire contents. If the comparison is TRUE,
then the box output is TRUE.

The memory area which holds the sequential representation of a PLC data type must have the
Array of Byte data type and you must declare the data block to have standard (not optimized)
access. Make sure that there is enough memory space prior to the conversion.

The instruction enables you to convert multiple sequential representations of converted PLC
data types back to their original data types.

Note

If you only want to convert back a single sequential representation of a PLC data type (UDT),
you can also use the instruction "TRCV: Receive data via communication connection"”.

Table 8-74 DESERIALIZE instruction

LAD / FBD SCL Description
Deserialize ret_val := Deserialize(Converts the sequential represen-
- EN ENO - SRC_ARRAY:= variant_in , tation of a PLC data type (UDT)
SRC_ARRAY Ret_Val DEST VARIABLE=> variant out |backtoaPLC datatype andfillsits
POS DEST_VARIABLE ' entire contents
POS:=_dint_inout);

Table 8-75 Parameters for the DESERIALIZE instruction

Parameter Type Data type Description

SRC_ARRAY IN Variant Global data block that con-
tains the data stream

DEST_VARIABLE INOUT Variant Tag in which to store the con-
verted PLC data type (UDT)

POS INOUT Dint Number of bytes that the con-
verted PLC data type uses

RET_VAL ouT Int Error information

Table 8-76 RET_VAL parameter

RET_VAL’ Description

(W#16#...)

0000 No error

80B0 The memory areas for the SRC_ARRAY and DEST_VARIABLE parameters overlap.

8136 The data block at the DEST_VARIABLE parameter is not a block with standard access.

8150 The Variant data type at the SRC_ARRAY parameter contains no value.

8151 Code generation error at the SRC_ARRAY parameter.

S7-1200 Programmable controller

244 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

RET_VAL* Description

(W#16#...)

8153 There is not enough free memory available at the SRC_ARRAY parameter.
8250 The Variant data type at the DEST_VARIABLE parameter contains no value.
8251 Code generation error at the DEST_VARIABLE parameter.

8254 Invalid data type at the DEST_VARIABLE parameter.

8382 The value at parameter POS is outside the limits of the array.

“You can view the error codes as either integer or hexadecimal in the program editor.

Example: Deserialize instruction

The following example shows how the instruction works:

Network 1:
MOVE Desevialize
—EN EN END —
IN 4 OuUTl *EBuflerPos” "Buffer” Field SRC_ARRAY Rer_val £Ermar

gBufferfos POS DEST_VARIABLE "Target” Client

The "MOVE" instruction moves the value "0" to the "#BufferPos" data block tag. The Deserialize
instruction then deserializes the sequential representation of the customer data from the
"Buffer" data block and writes it to the "Target" data block. The Deserialize instruction
calculates the number of bytes that the converted data uses and stores it in the "#BufferPos"
data block tag.

Network 2:
Deserdaline Y Deseralize
EM END | sting [EN END =i
Buffer” Field — SRC_ARRAY RetVal — #Emor slabel Duffer Field — SpC ARRAY Ret_Val — #Ermor
wBufferPos — posg DEST VARIABLE #Label wBufferPos — pog

*Targer".
Article[#DeliverPa
DEST_VARIABLE — 5]

:_ Deserialize
B |7 EN ENO ———
9| ~gufier Field — SRC_ARRAY Ret Val — #Emer

Flabel zBufierfos FOS *Target®
DEST_VARIABLE Bill[#DeliverPas]

The "Deserialize" instruction deserializes the sequential representation of the data stream
pointed to by "Buffer" and writes the characters to the "#Label" operand. The logic compares
the characters using the comparison instructions "arti" and "Bill". If the comparison for "arti" =
TRUE, the data is article data that is to be deserialized and written to the "Article" data structure
of the "Target" data block. If the comparison for "Bill" = TRUE, the data is billing data that is to
be deserialized and written to the "Bill" data structure of the "Target" data block.

Function block (or Function) interface:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 245

Basic instructions

8.6 Move operations

8.6.3

246

Mame Data type
al - Input
q] = DeliverPos Int
al ¢ Output
< k InOut
4l p Static
4l - Temp
aj = BufferPos Dint
< = Error Int
4] = Label string[4]

Custom PLC data types:

The structure of the two PLC data types (UDTs) for this example are as follows:

Article Client
Mame Data type Marme Data type
1 < Mumber Dint 1 |41 Title Int
2 < Declaration String 2 |41 Firstnarme string[10]
3 |« Calli Int 3 |« Surname String[10]
Data blocks:

The two data blocks for this example are as follows:

Target Buffer
Marme Data type Name Data type
1 < - Static 1 @1 = Static
2 4l = » Client “Client” 2 |lam = » Field Array[0..294] of Byte
3 <= » Aricle Array[0..10] of "Article”
4 g = » Bil Array[0..10] of Int
Serialize

You can use the "Serialize" instruction to convert several PLC data types (UDTs) to a
sequential representation without any loss of structure.

You can use the instruction to temporarily save multiple structured data items from your
program to a buffer, for example to a global data block, and send them to another CPU. The
memory area in which the converted PLC data types are stored must have the ARRAY of BYTE
data type and be declared with standard access. Make sure that there is enough memory space
prior to the conversion.

The POS parameter contains information about the number of bytes that the converted PLC
data types use.

Note

If you only want to send a single PLC data type (UDT), you can use the instruction "TSEND:
Send data via communication connection".

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

Table 8-77 SERIALIZE instruction
LAD / FBD SCL Description
Soriaioe ret_val := Serialize(Converts a PLC data type
Jen - SRC_VARIABLE=> variant in_, (UDT) to a sequential repre-
SRC_VARIABLE Ret_Val DEST_ARRAY:= variant out , sentation.
POS:= dint inout);
FOS DEST_ARRAY - — —
Table 8-78 Parameters for the SERIALIZE instruction
Parameter Type Data type Description
SRC_VARIABLE IN Variant PLC data type (UDT) that is
to be converted to a serial
representation
DEST_ARRAY INOUT Variant Data block in which the gen-
erated data stream is to be
stored
POS INOUT Dint Number of bytes that the con-
verted PLC data types use.
The calculated POS parame-
ter is zero-based.
RET_VAL ouT Int Error information
Table 8-79 RET_VAL parameter
RET_VAL’ Description
(W#16#...)
0000 No error
80B0 The memory areas for the SRC_VARIABLE and DEST_ARRAY parameters overlap.
8150 The Variant data type at the SRC_VARIABLE parameter contains no value.
8152 Code generation error at the SRC_VARIABLE parameter.
8236 The data block at the DEST_ARRAY parameter is not a block with standard access.
8250 The Variant data type at the DEST_ARRAY parameter contains no value.
8252 Code generation error at the DEST_ARRAY parameter.
8253 There is not enough free memory available at the DEST_ARRAY parameter.
8254 Invalid data type at the DEST_VARIABLE parameter.
8382 The value at parameter POS is outside the limits of the array.

“You can view the error codes as either integer or hexadecimal in the program editor.

Example: Serialize instruction
The following example shows how the instruction works:
Network 1:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

247

Basic instructions

8.6 Move operations

248

MOVE serialize

EN — EN END =i
IN &5 OUTI #BufferPos "Source” Clienmt SRC_VARIABLE Ret_val eErmar
#BufferPos POS DEST_ARRAY "Bufier” Field

The "MOVE" instruction moves the value "0" to the "#BufferPos" parameter. The "Serialize"
instruction serializes the customer data from the "Source" data block and writes it in sequential
representation to the "Buffer" data block. The instruction stores the number of bytes used by the
sequential representation in the "#BufferPos" parameter.

Network 2:
5_MOVE Serialize
EN EN END ———
IM ou #labe #label SRC_VARIABLE Ret_Val #Errar
#BufferPos POS DEST_ARRAY “Buffer® Field

The logic now inserts some separator text to make it easier to deserialize the sequential
representation later. The "S_MOVE" instruction moves the text string "arti" to the "#Label"
parameter. The "Serialize" instruction writes these characters after the source client data to the
"Buffer" data block. The instruction adds the number of bytes in the text string "arti" to the
number already stored in the "#BufferPos" parameter.

Network 3:
Seralize
ENO
"Source” Rer_val FErrar
Article[# Deliverfo DEST_ARRAY — "Buffer” Field
5] — SRC_VARIABLE

#BufferPos POS

The "Serialize" instruction serializes the data of a specific article, which is calculated in runtime,
from the "Source" data block and writes it in sequential representation to the "Buffer" data block
after the "arti" characters

Block Interface:

Mame Data type
al - Input
q] = DeliverPos Int
al ¢ Output
< k InOut
4l p Static
4l - Temp
aj = BufferPos Dint
< = Error Int
4] = Label string[4]

Custom PLC data types:

The structure of the two PLC data types (UDTSs) for this example are as follows:

Article Client
Mame Data type Marme Data type
1 < Mumber Dint 1 |41 Title Int
2 < Declaration String 2 |41 Firstnarme String[10]
3 |« Calli Int 3 |« Surname String[10]

Data blocks:

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

The two data blocks for this example are as follows:

Source

Mame

W k=

< w Static
4] = p Client
<l = b Article

Buffer
Data type MName Data type
1 |40 - Static
*Client” 2 <= » Field Array][0.294] of Byte

Array[0..10] of "Article”

8.6.4 FILL_BLK (Fill block) and UFILL_BLK (Fill block uninterruptible)
Table 8-80 FILL_BLK and UFILL_BLK instructions
LAD / FBD SCL Description
[FILL_BLE | FILL_BLK(Interruptible fill instruction: Fills an address range with copies of a
—EN EMD| in:=_variant_in, specified data element
{IN ouT | count:=int,
{ COUNT out=> variant_out);
[GALL BLE | UFILL_BLK(Uninterruptible fill instruction: Fills an address range with copies of
-iEN ENO in:= variant in, a specified data element
{1M OuT | count:=int,
{COUNT out=> variant_out) ;
Table 8-81 Data types for parameters
Parameter Data type Description
IN Sint, Int, Dint, USInt, UInt, UDInt, Real, LReal, Byte, Word, | Data source address
DWord, Time, Date, TOD, Char, WChar
COUNT UDint, USInt, Ulint Number of data elements to copy
ouT Sint, Int, DInt, USInt, Uint, UDInt, Real, LReal, Byte, Word, | Data destination address
DWord, Time, Date, TOD, Char, WChar

Note

Rules for data fill operations
e To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)

To fill with a single elementary data type, use MOVE
To fill an array with an elementary data type, use FILL_BLK or UFILL_BLK
To fill a single character in a string, use MOVE

The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the I, Q, or M
memory areas.

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the destination
where the initial address is specified by the parameter OUT. The copy process repeats and a
block of adjacent addresses is filled until the number of copies is equal to the COUNT

parameter.

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

249

Basic instructions

8.6 Move operations

FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:

e Interrupt events are queued and processed during FILL_BLK execution. Use the FILL_BLK
instruction when the data at the move destination address is not used within an interrupt OB
subprogram or, if used, the destination data does not have to be consistent.

® Interrupt events are queued but not processed until UFILL_BLK execution is complete. Use
the UFILL_BLK instruction when the move operation must be completed and the destination
data consistent, before the execution of an interrupt OB subprogram.

Table 8-82 ENO status

ENO Condition Result
1 No error The IN element was successfully copied to
all COUNT destinations.
0 The destination (OUT) range exceeds the | Elements that fit are copied. No partial ele-
available memory area ments are copied.
8.6.5 SWAP (Swap bytes)

Table 8-83 SWAP instruction

LAD / FBD SCL Description
T SwaAP | out := SWAP(in); Reverses the byte order for two-byte and four-byte data elements. No change is
" | made to the bit order within each byte. ENO is always TRUE following execution
={EH EN? = of the SWAP instruction.
M]

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8-84 Data types for the parameters

Parameter Data type Description

IN Word, DWord Ordered data bytes IN

ouT Word, DWord Reverse ordered data bytes OUT
Example 1 Parameter IN = MBO Parameter OUT = MB4,

(before execution) (after execution)

Address MWO MB1 MW4 MB5
W#16#1234 12 34 34 12
WORD MSB LSB MSB LSB

S7-1200 Programmable controller
250 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

Example 2 Parameter IN = MBO Parameter OUT = MB4,
(before execution) (after execution)
Address MDO MB1 MB2 MB3 MD4 MB5 MB6 MB7
DW#16# 12 34 56 78 78 56 34 12
12345678 MSB LSB MSB LSB
DWORD
8.6.6 LOWER_BOUND: (Read out ARRAY low limit)
Table 8-85 LOWER_BOUND instruction
LAD / FBD SCL Description
LOWER_BOUND out := LOWER_BOUND (You can declare tags with ARRAY[*] in the block
“EN EnG F ARR:= variant in_, interface. For these local tags, you can read out
ARR ouT DIM:= udint in_); the limits of the ARRAY. You will need to specify
e the required dimension at the DIM parameter.
The LOWER_BOUND (Read out ARRAY low lim-
it). instruction lets you read out the variable low
limit of the ARRAY.
Parameters

The following table shows the parameters of the instruction "LOWER_BOUND: Read out

ARRAY low limit":

Parameters | Declaration | Data type Memory area Description
EN Input BOOL I,Q, M, D, L Enable input
ENO Output BOOL ,Q, M, D, L Enable output ENO has the
signal state "0" if one of the
following conditions applies:
® The EN enable input has
the signal state "0".
® The dimension specified
at input DIM does not
exist.
ARR Input ARRAY [*] FB: Section InOut | ARRAY of which the variable
FC: Sections Input | low limit is to be read.
and InOut
DIM Input UDINT 1,Q, M, D, L or con- | Dimension of the ARRAY of
stant which the variable low limit is
to be read.
ouT Output DINT I,Q,M,D,L Result

You can find additional information on valid data types under "Data types (Page 116)":

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

251

Basic instructions

8.6 Move operations

Example
In the function (FC) block interface, the input parameter ARRAY_A is a one-dimensional array
with variable dimensions.
Block_1
Mame Data type Default value
1 <@ = Input
2 < = » ARRAY_A Array[*] of Int
4 4l T Output
5 |+ = Rezult Dint
(<] i
e
HF Al == —
¥ Block title: ...
* Network1:
| “Enable_Start” LOWER_BOUND "Enable_Out”
| | EN ENO {5}
#ARRAY_A — ARR OUT — #Result
DIM
If the "Enable_Start" operand returns signal state "1", the CPU executes the LOWER_BOUND
instruction. It reads out the variable low limit of the ARRAY #ARRAY_A from the one-
dimensional array. If the instruction executes without errors, it sets operand "Enable_Out" and
sets the "Result" operand to the low limit of the array.
8.6.7 UPPER_BOUND: (Read out ARRAY high limit)
Table 8-86 LOWER_BOUND instruction
LAD / FBD SCL Description
UPPER_BOUND out := UPPER_BOUND (You can declare tags with ARRAY[*] in the block
- EN ENO - ARR:= variant in_, interface. For these local tags, you can read out
ARR ouT DIM:= udint_in); the limits of the ARRAY. You will need to specify
— the required dimension at the DIM parameter.
The UPPER_BOUND (Read out ARRAY high lim-
it) instruction lets you read out the variable high
limit of the ARRAY.
S7-1200 Programmable controller
252 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

Parameters
The following table shows the parameters of the instruction "UPPER_BOUND: Read out
ARRAY high limit":
Parameters | Declaration | Data type Memory area Description
EN Input BOOL ,Q, M, D, L Enable input
ENO Output BOOL I,Q,M,D,L Enable output
ARR Input ARRAY [*] FB: Section InOut | ARRAY of which the variable
FC: Sections Input | high limit is to be read.
and InOut
DIM Input UDINT I,Q, M, D, L or con- | Dimension of the ARRAY of
stant which the variable high limit
is to be read.
ouT Output DINT I,Q, M, D, L Result
You can find additional information on valid data types under "Data types (Page 116)":
Example

In the function (FC) block interface, the input parameter ARRAY_A is a one-dimensional array
with variable dimensions.

Block_1

Name Data type Default value
< ™ Input
<0 =k ARRAY_A Array[*] of Int

= =_00 NEW=

I

< * Output
<] = Result Dint
(<] I

L.

L

HF i = —_

* Block title:

hd Network 1: .

"Enable_start” UPPER_BOUND "Enable_out”
{ | EN END { |
EARRAY_A — ARR out #Result
1 Dim

If the "Enable_Start" operand returns signal state "1", the CPU executes the instruction. It reads
out the variable high limit of the ARRAY #ARRAY_A from the one-dimensional array. If the
instruction executes without errors, it sets operand "Enable_Out" and sets the "Result" operand.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 253

Basic instructions

8.6 Move operations

8.6.8 Read / Write memory instructions

8.6.8.1 PEEK and POKE (SCL only)

SCL provides PEEK and POKE instructions that allow you to read from or write to data blocks,
I/0, or memory. You provide parameters for specific byte offsets or bit offsets for the operation.

Note

To use the PEEK and POKE instructions with data blocks, you must use standard (not
optimized) data blocks. Also note that the PEEK and POKE instructions merely transfer data.
They have no knowledge of data types at the addresses.

PEEK (area:=_in , _ Reads the byte referenced by byteOffset of
dbNumber:=_in_, the referenced data block, I/0O or memory area.
byteOffset:= in); .

- - Example referencing data block:
$MB100 := PEEK (area:=16#84,

dbNumber:=1, byteOffset:=#i) ;
Example referencing IB3 input:

$MB100 := PEEK (area:=16#81,
dbNumber:=0, byteOffset:=#i); // when
#i =3

PEEK_WORD (area:=_in_, Reads the word referenced by byteOffset of
dbNumber:= in_, the referenced data block, I/O or memory area.
byteOffset:= in_); Example'

$MW200 := PEEK WORD (area:=16#84,
dbNumber:=1, byteOffset:=#i) ;

PEEK _DWORD (area:=_in , Reads the double word referenced by byteOff-
dbNumber:=_in_, set of the referenced data block, 1/0O or mem-
byteOffset:= in_); ory area.

Example:
$MD300 := PEEK DWORD (area:=16#84,
dbNumber:=1, byteOffset:=#i) ;

PEEK_BOOL (area:=_in_, Reads a Boolean referenced by the bitOffset
dbNumber:=_in_, and byteOffset of the referenced data block, I/

byteOffset:= in

bitOffset:= in);

O or memory area

Example:
$MB100.0 := PEEK BOOL (area:=16#84,

dbNumber:=1, byteOffset:=#ii,
bitOffset:=#7) ;

S7-1200 Programmable controller
254 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

POKE (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
value:=_in);

POKE_BOOL (area:=_in_,

dbNumber:= in_,
byteOffset:= in_,
bitOffset:=_in_,
value:=_in);

POKE BLK (area_src:=_in_,

dbNumber src:= in_,
byteOffset_src:= in_,
area dest:= in ,
dbNumber dest:=_in ,
byteOffset _dest:=_in_,
count:= in);

8.6 Move operations

Writes the value (Byte, Word, or DWord) to the
referenced byteOffset of the referenced data
block, I/0 or memory area

Example referencing data block:

POKE (area:=16#84, dbNumber:=2,
byteOffset:=3, value:="Tag 1");

Example referencing QB3 output:
POKE (area:=16#82, dbNumber:=0,
byteOffset:=3, value:="Tag 1");

Writes the Boolean value to the referenced bi-
tOffset and byteOffset of the referenced data
block, I/0O or memory area

Example:

POKE_BOOL (area:=16#84, dbNumber:=2,
byteOffset:=3, bitOffset:=5,

value:=0) ;

Writes "count" number of bytes starting at the
referenced byte Offset of the referenced
source data block, I/O or memory area to the
referenced byteOffset of the referenced desti-
nation data block, /O or memory area
Example:

POKE BLK (area_ src:=16#84,

dbNumber src:=#src_db,
byteOffset_src:=#src_byte,

area dest:=16i#84,

dbNumber dest:=f#isrc_db,
byteOffset_dest:=#src_byte,

count:=10) ;

For PEEK and POKE instructions, the following values for the "area", "area_src" and
"area_dest" parameters are applicable. For areas other than data blocks, the dbNumber
parameter must be 0.

16#81 |1
16482 | Q
16#83 | M
16#84 | DB
8.6.8.2 Read and write big and little Endian instructions (SCL)

The S7-1200 CPU provides SCL instructions for reading and writing data in little endian format
and in big endian format. Little endian format means that the byte with the least significant bit
is in the lowest memory address. Big endian format means that the byte with the most

significant bit is in the lowest memory address.

The four SCL instructions for reading and writing data in little endian and big endian format are

as follows:

e READ_LITTLE (Read data in little endian format)
e WRITE_LITTLE (Write data in little endian format)

S7-1200 Programmable controller

System Manual, V4.4 11/2019, ASE02486680-AN

255

Basic instructions

8.6 Move operations

e READ_BIG (Read data in big endian format)
e WRITE_BIG (Write data in big endian format)

Table 8-87 Read and write big and little endian instructions

LAD /FBD

SCL

Description

Not available

READ LITTLE (

src_array:= variant in_,
dest Variable => out_,
pos:=_dint_inout)

Reads data from a memory area and writes it to a single
tag in little endian byte format.

Not available

WRITE LITTLE (

src_variable:= in_,
dest _array => variant_inout_,
pos:=_dint_inout)

Writes data from a single tag to a memory area in little
endian byte format.

Not available

READ BIG (

src_array:= variant_in_,
dest Variable => out_,
pos:=_dint_inout)

Reads data from a memory area and writes it to a single
tag in big endian byte format.

Not available

WRITE BIG(

src_variable:= in_,
dest_array => variant_inout_,
pos:=_dint_inout)

Writes data from a single tag to a memory area in big
endian byte format.

Table 8-88 Parameters for the READ_LITTLE and READ_BIG instructions

Parameter

Data type

Description

src_array

Array of Byte

Memory area from which to read da-
ta

dest_Variable

Bit strings, integers, floating-point numbers, timers, date and

time, character strings

Destination variable at which to
write data

pos DINT Zero-based position from which to
start reading data from the src_array
input.
Table 8-89 Parameters for the WRITE_LITTLE and WRITE_BIG instructions
Parameter Data type Description
src_variable Bit strings, integers, floating-point numbers, LDT, TOD, LTOD, | Source data from tag
DATA, Char, WChar
dest_array Array of Byte Memory area at which to write data
pos DINT Zero-based position at which to start
writing data into the dest_array out-
put.
S7-1200 Programmable controller
256 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

Table 8-90 RET_VAL parameter

RET_VAL" Description

(Wi#16#...)

0000 No error

80B4 The SRC_ARRAY or DEST_ARRAY is not an Array of Byte

8382 The value at parameter POS is outside the limits of the array.

8383 The value at parameter POS is within the limits of the Array but the size of the memory area exceeds the high
limit of the array.

“You can view the error codes as either integer or hexadecimal in the program editor.

8.6.9 Variant instructions

8.6.9.1 VariantGet (Read VARIANT tag value)

You can use the "Read out Variant tag value" instruction to read the value of the tag to which
the Variant pointer at the SRC parameter points and write it in the tag at the DST parameter.

The SRC parameter has the Variant data type. Any data type except for Variant can be
specified at the DST parameter.

The data type of the tag at the DST parameter must match the data type to which the Variant
points.

Table 8-91 VariantGet instruction

LAD / FBD SCL Description
VanantGet Reads the tag pointed to by the SRC parameter and writes it to the
1EN ENO - VariantGet (tag at the DST parameter
SRC DsT SRC:= variant_in_,

DST=> variant out);

Note

To copy structures and arrays, you can use the "MOVE_BLK_VARIANT: Move block"
instruction.

Table 8-92 Parameters for the VariantGet instruction

Parameter Data type Description

SRC Variant Pointer to source data

DST Bit strings, integers, floating-point numbers, timers, date and Destination at which to write data
time, character strings, ARRAY elements, PLC data types

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 257

Basic instructions

8.6 Move operations

Table 8-93 ENO status

ENO Condition Result
1 No error Instruction copied the tag data pointed to by
SRC to the DST tag.
0 Enable input EN has the signal state "0" or the data types | Instruction copied no data.
do not correspond.

8.6.9.2 VariantPut (Write VARIANT tag value)

You can use the "Write VARIANT tag value" instruction to write the value of the tag at the SRC
parameter to the tag at the DST parameter to which the VARIANT points.

The DST parameter has the VARIANT data type. Any data type except for VARIANT can be
specified at the SRC parameter.

The data type of the tag at the SRC parameter must match the data type to which the VARIANT
points.

Table 8-94 VariantPut instruction

LAD / FBD SCL Description
VariantPut Writes the tag referenced by the SRC parameter to the variant
- EN END - VariantPut (pointed to by the DST parameter
5RC SRC:= variant in_,
DT DST=> variant_in);

Note

To copy structures and ARRAYSs, you can use the "MOVE_BLK_VARIANT: Move block"
instruction.

Table 8-95 Parameters for the VariantPut instruction

Parameter Data type Description
SRC Bit strings, integers, floating-point numbers, timers, date and Pointer to source data
time, character strings, ARRAY elements, PLC data types
DST Variant Destination at which to write data

Table 8-96 ENO status

ENO Condition Result
1 No error Instruction copied the SRC tag data to the DST
tag.
0 Enable input EN has the signal state "0" or the data types | Instruction copied no data.
do not correspond.

S7-1200 Programmable controller
258 System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

8.6.9.3 CountOfElements (Get number of ARRAY elements)

You can use the "Get number of ARRAY elements" instruction to query how many Array
elements are in a tag pointed to by a Variant.

If it is a one-dimensional ARRAY, the instruction returns the difference between the high and
low limit +1 is output. If it is a multi-dimensional ARRAY, the instruction returns the product of
all dimensions.

Table 8-97 CountOfElements instruction

LAD / FBD SCL Description
CountOfElements Counts the number of array elements at
-EM ENO - Result := CountOfElements(| the array pointed to by the IN parameter.
M RET_VAL _variant_in);

Note

If the Variant points to an Array of Bool, the instruction counts the fill elements to the nearest
byte boundary. For example, the instruction returns 8 as the count for an Array[0..1] of Bool.

Table 8-98 Parameters for the CountOfElements instruction

Parameter Data type Description

IN Variant Tag with array elements to be coun-
ted

RET_VAL UDint Instruction result

Table 8-99 ENO status

ENO Condition Result
1 No error Instruction returns the number of array ele-
ments.
0 Enable input EN has the signal state "0" or the Variant Instruction returns 0.
does not point to an array.

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 259

Basic instructions

8.6 Move operations

8.6.10

8.6.10.1

Legacy instructions

FieldRead (Read field) and FieldWrite (Write field) instructions

Note

STEP 7 V10.5 did not support a variable reference as an array index or multi-dimensional
arrays. The FieldRead and FieldWrite instructions were used to provide variable array index
operations for a one-dimensional array. STEP 7 V11 and greater do support a variable as an
array index and multi-dimensional arrays. FieldRead and FieldWrite are included in STEP 7
V11 and greater for backward compatibility with programs that have used these instructions.

Table 8-100 FieldRead and FieldWrite instructions

LAD / FBD SCL Description
FamT— value := member[index]; | FieldRead reads the array element with the index val-
277 ue INDEX from the array whose first element in speci-
EN ENO — fied by the MEMBER parameter. The value of the array
INDEX Wil UE element is transferred to the location specified at the
MEMBER VALUE parameter.
—— member [index] := value; | WriteField transfers the value at the location specified
iR by the VALUE parameter to the array whose first ele-
EN ENO — ment is specified by the MEMBER parameter. The val-
INDEX MEMEER ue is transferred to the array element whose array in-
WALUE dex is specified by the INDEX parameter.

' For LAD and FBD: Click the "???" and select a data type from the drop-down menu.

Table 8-101 Data types for parameters
Parameter and type Data type Description
Index Input Dint The index number of the array element to be read or
written to
Member ' Input Binary numbers, integers, float- | Location of the first element in a one- dimension array
ing-point numbers, timers, defined in a global data block or block interface.
DATE, TOD, CHAR and For example: If the array index is specified as [-2..4],
WCHAR as components of an | then the index of the first element is -2 and not 0.
ARRAY tag
Value ' Out Binary numbers, integers, float- | Location to which the specified array element is cop-
ing-point numbers, timers, ied (FieldRead)
DATE, TOD, CHAR, WCHAR Location of the value that is copied to the specified
array element (FieldWrite)

' The data type of the array element specified by the MEMBER parameter and the VALUE parameter must have the same

data type.

260

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN

Basic instructions

8.6 Move operations

The enable output ENO = 0, if one of the following conditions applies:
® The EN input has signal state "0"

® The array element specified at the INDEX parameter is not defined in the array referenced
at MEMBER parameter

® Errors such as an overflow occur during processing

Example: Accessing data by array indexing

To access elements of an array with a variable, simply use the variable as an array index in your
program logic. For example, the network below sets an output based on the Boolean value of
an array of Booleans in "Data_block_1" referenced by the PLC tag "Index".

"Data_block_1"
Bool_ W00
Array["Index"] "Tag_1"

] | I 1
LI} LA |

The logic with the variable array index is equivalent to the former method using the FieldRead

instruction:
FieldRead
Boal
Er ERC
HhADTO0 Q0.0
"Index" — INDEX WALLUE — "Tag_1"
"Data_block_1".
Boaol_array{1] — MEMEER

FieldWrite and FieldRead instructions can be replaced with variable array indexing logic.

SCL has no FieldRead or FieldWrite instructions, but supports indirect addressing of an array

with a variable:
#Tag_1 := "Data_block 1".Bool Arrayl[#Index];

S7-1200 Programmable controller
System Manual, V4.4 11/2019, A5E02486680-AN 261

Basic instructions

8.6 Move operations

8.6.11 SCATTER

SCATTER: Parse the bit sequence into individual bits

The Parse the bit sequence into individual bits instruction parses a tag of the BYTE, WORD,
or DWORD data type into individual bits and saves them in an ARRAY of BOOL, an anonymous
STRUCT or a PLC data type exclusively with Boolean elements.

Table 8-102 SCATTER

LAD/FBD SCL Description
SCATTER SCATTER (IN := The SCATTER: Parse the bit sequence into individual bits instruction par-
WORD #SourceWord, ses atagofthe BYTE, WORD, or DWORD data type into individual bits and
—]EN OUT}— ouT => saves them in an ARRAY of BOOL, an anonymous STRUCT or a PLC data
#DestinationArray | type exclusively with Boolean elements.
—IN ENOp— }s;
Note

Multi-dimensional ARRAY of BOOL

With the "Parse the bit sequence into individual bits" instruction, the use of a multidimensional
ARRAY of BOOL is not permitted.

Note
Length of the ARRAY, STRUCT or PLC data type

The ARRAY, the anonymous STRUCT or the PLC data type must have exactly the number of
elements