

CL Programing Manual

2016. 7. 29.

CL Programming Manual

2

The information contained herein is the property of Core Robot, Inc., and shall not be

reproduced in whole or in part without prior written approval of Core Robot, Inc. The

information herein is subject to change without notice and should not be construed as a

commitment by Core Robot, Inc.

This manual is periodically reviewed and revised.

Core Robot, Inc., assumes no responsibility for any errors or omissions in this document.

Critical evaluation of this manual by the user is welcomed. Your comments assist us in

preparation of future documentation. A form is provided at the back of the book for

submitting your comments.

Copyright © 2016 by Core Robot, Inc. All rights reserved.

CL Programming Manual

3

Contents

1. Introduction .. 5

2. Data & Variables ... 6

1) Numeric ... 6

2) String .. 7

3) Joint Location ... 7

4) Trans Location (Cartesian Coordinate) ... 8

5) Array ... 10

6) Unit ... 10

3. Constant .. 11

4. Operator .. 12

1) Unary Real Operators ... 12

7) Binary Real Operators ... 12

5. Comment : ; ... 13

6. Controlling the program flow ... 14

1) Goto ... 15

2) CALL ... 15

3) Signal Interrupt .. 16

4) Return, Stop, Pause ... 16

5) Wait .. 17

6) IF .. THEN .. ELSE .. END... 18

7) Looping structures : While … Do, Do … Until, For .. 19

8) SWITCH … CASE DEFAULT END ... 20

CL Programming Manual

4

7. Functions ... 22

8. Instructions ... 25

1) Transform & Position .. 25

2) Robot Motion ... 27

3) Motion Modifiers ... 30

4) I/O... 33

5) Touch Probe .. 34

6) Network ... 35

7) Conveyor Tracking ... 36

8) ETC .. 42

9) User coordinate instructions ... 42

9. Diagnostic Instructions ... 43

10. Program selection with an external i/o .. 44

1) Example : Program selection with EPS MODE ... 45

2) Program selection with Bits instruction and SWITCH CASE structure 45

11. Example programs .. 47

1) Basic motion program .. 47

2) CP Motion ... 48

3) IO Instructions .. 48

4) MoveC .. 49

5) Conveyor Tracking and Pickup ... 50

CL Programming Manual

5

1. Introduction

CL(Core Language) Robot Language provides the high level of functionalities to write a robot

program for the various applications. This is a reference manual containing a detailed explanation

of the programming language as well as all data types, instructions and functions.

If you want to learn about how to operate with the coreCon, “coreCon User’s Guide” will help you.

CL Programming Manual

6

2. Data & Variables

CL has four data types which are numeric, joint location, trans location, and string. In addition

to those basic types the array of each data type can be used. The data are used as the arguments

of functions and instructions, and are defined as the variables or the constants.

The variable name is defined with the combination of alphabetic characters and the decimal

numbers. However, it cannot be started with the number and have the special character, either.

For example, “V100” is a right variable name, but “100V” or “V@100” is wrong name. The dot (.)

and under score (_) as well as the alphabetic characters can be used as a variable name.

Therefore V.temp and V_press are valid names. The system reserved keyword cannot be used as a

variable name such as if, random. To distinguish the actual type of variable, string variable and

joint location variable starts with special character. The string variable starts with $ and the joint

location variable starts with #. The functions related with those data types also start with the

same special characters.

1) Numeric

Numeric data is a combination of numerals, variables, operators, and functions which return

numeric values. Numeric expressions are used not only for mathematical calculations, but also as

arguments for monitor commands or program instructions. Numeric values used in the CL system

are divided into the three types described below:

INTEGERS

Integers are values without fractional parts (whole numbers). Values with full precision ranges

are from -16,777,216 to +16,777,216. Values that exceed this range are rounded to seven

significant digits. Integer values are usually entered as decimal numbers, however, it may be more

convenient to enter them in binary or hexadecimal notations. The hex number is set by adding

^H in front of the digit

REAL NUMBERS

Real numbers have both the integer part and a fractional part which can range from -3.4E

+38 ~ 3.4E +38. Like integers, real values are positive, zero or negative. They can be represented

in scientific notation. Real values are stored with an accuracy of approximately seven digits, but

actual values may have less precision caused by a calculation error.

LOGICAL VALUES

Logical values have only two states, ON or OFF. These two states are also referred to as TRUE

CL Programming Manual

7

and FALSE respectively. A value of negative one (-1) is assigned for the TRUE or ON state and a

value of zero (0) is assigned for the FALSE or OFF state.

2) String

String data is enclosed by the double quotation mark. It represents the character array. String

variable starts with the $ to distinguish form others.

3) Joint Location

A joint location’s value is represented by the exact position of the individual robot joints in

degrees. There are several characteristics of joint locations that should be considered. These

characteristics result from joint angles being recorded.

Advantages of joint locations: Playback precision is achieved and there is no ambiguity

about robot configuration at a location.

Disadvantages of joint locations: The values recorded can be used by any model of robot,

however the tool center point location is different when used by a robot of different physical size.

Precision locations cannot be easily modified to compensate for location changes in the robot

workspace, because a change requires complete knowledge of the relationship between the

positions of all robot joints and the locations in the robot workspace.

volume = 100

vol2 = -10.3

vol3 = 1.2e+4

flag = ^H6BA3

lampA = ON

foundOK = TRUE

$name = “Robert Kim”

$msg = “Program completed”

CL Programming Manual

8

Like the above example, the location variable is defined by Point location_variable =

target_value. The actual value of #p3 location is (10,20, 0, 0, 0, 0). The default value is set to 0 for

the missing arguments.

4) Trans Location (Cartesian Coordinate)

A transformation location is represented by defining the location in terms of a Cartesian (XYZ)

reference frame fixed to the base of the robot. The position of the tool center point is defined

with X, Y, and Z coordinates, and the tool orientation is defined by three Euler angles measured

from the coordinate axes. The Euler angles are represented as (A, B, C). To differentiate from the

joint location variable, the trans location variable has no prefix character.

Advantages of transformation locations: A value defined for use with one robot can be used

with a different robot having a similar work envelope because the value is defined in terms of

workspace coordinates. Transformations are easily modified to change a location within the robot

workspace. A powerful feature of transformation locations is the ability to define locations as

combinations of values. This is called compound or relative transformation. Such values are used

to define the location of a part relative to its fixturing.

Disadvantages of transformation locations: Since a transformation location defines the

location of the tool center point in terms of coordinates in the workspace, no information is

provided about the specific robot configuration at the location. Whenever a transformation is

used to define the destination of a robot motion, the AS system must convert the transformation

location into an equivalent precision location so it knows how to move the individual joints. This

conversion can introduce small location errors. Despite these disadvantages, transformation

locations are generally much more convenient than precision locations.

MoveJ #p1 ; Joint Move to joint location #p1

MoveL #p2 ; Joint move to joint location #p2

Point #p3 = Joint(10, 20) ; Define the joint location #p3

Point #p4 = #p3 ; Copy the joint location #p3 to #p4

delta = 5

Point #p5 = Joint(delta, delta*2, -delta*2) ; Joint location using the numeric variable

CL Programming Manual

9

Figure 1 Trans location data

Figure 2. Actual location depends on the reference coordinate

Even the same location Trans(100, 100, 0), the actual location will be different by the

reference coordinate. But as the joint location defines the each axis position, it forms the same

pose for all cases if the robot is the same robot.

MoveJ pt1 ; Move to trans location pt1

MoveL pt2 ; Move to trans location

Point pt3 = Trans(10, 20) ; Define trans location variable pt3

Point pt4 = pt3 ; Copy the translocation variable pt3 to pt4

delta = 5

Point pt5 = Trans(delta, delta*2, -delta*2) ; Define trans variable using numeric variable

CL Programming Manual

10

5) Array

An array is a group of values that share a single name. Location variables can be scalars or

arrays. A location scalar is a single location value. Each value in an array is called an element of

the array. An element of a location array is specified in exactly the same way as an element of a

numeric array by appending an index enclosed in brackets to the array name. For example,

“part[7]” refers to element 7 of the array “part.” Indexes must be integers in the range of 0 ~

9999. Three examples of arrays are described

6) Unit

The default units are as follows..

 Length/Distance : mm

 Angle : deg

 Angle unit is degree. The argument value used in Sin(30) is not radian but

degree.

 Velocity and Acceleration : %

 The percentage with respect to the maximum velocity and acceleration

 The maximum velocity is defined in the robot configuration. In case the

maximum velocity is 3000mm/s and the Speed is 10, the actual speed will be

300mm/s (= 3000mm/s * 10%).

A[1] = 10 ; numeric array

A[2] = 20

$name[0] = “John” ; String array

Point #p1[0] = Joint(10,0,3) ; location array

CL Programming Manual

11

3. Constant

CL has the predefined constant variable It helps the exact representation in some instructions.

 Unit constant

 Length : mm

 Time : s

 Speed : mm/s, sec, mm/min

 on / off : ON, OFF

 true/false : TRUE, FALSE

 Internally the value of ON/TRUE is -1, OFF/FALSE is 0.

 PI : 3.141592…

 NULL : identity trans matrix

 Icon constant

 ICONE : Error Icon = 0

 ICONW : Warning Icon = 1

 ICONI : Information Icon = 2

 These constants is used TPWrite instructions. The given icon is displayed in

Message icon..

Speed 80 mm/s

Speed 5 sec ; Move to the target for 5 seconds

WaitTime 1.5 s ; Wait 1.5 seconds

A = ON ; A is -1

B = OFF ; B is 0

CL Programming Manual

12

4. Operator

1) Unary Real Operators

 COM : Complement

 - : Negation

 NOT

7) Binary Real Operators

 ^ : power,

 * , / , MOD : multiplication, division and remainder

 +, - : addition and subtraction

 <, <=, =<, ==, >=, =>, > : Relational operators

 BAND, BOR, BXOR : Bit operators

 AND, OR, XOR : Logical operators

A = -3

Aa = -A ; Aa becomes 3

B = COM Aa ; Aa becomes 0xFFFFFFFC

C = TRUE

D = NOT C ; D becomes FALSE.

a = x^4 + 3 * (3 – x) ;

if a AND b then … ;

if a <= b then … ;

if (a < b) AND (c > d) then … ;

Wait Sig(1001) OR Sig(1002) ;

CL Programming Manual

13

5. Comment : ;

Comment starts with “ ;” The behind step string is ignored on running

; Move to wait position

MoveJ #pwait

WaitSig 1001

; Start to work

MoveL #ps

CL Programming Manual

14

6. Controlling the program flow

This chapter introduces the structures available in CL. CL provides the most control structure

instructions including a branch and looping. In addition CL also provides the specialized

instructions in robot application.

 Goto

 If condition goto label

 If condition then … Else … End

 While condition Do … End

 Do … Until condition

 For to step … End

 Switch . Case Default

 Call program

 Interrupt Signal#, InterruptHandler, [Motion Stop = TRUE]

 Return

 Pause

 Stop

 Wait condition, [timeout], [result]

 WaitTime time

CL Programming Manual

15

1) Goto

The GOTO instruction causes program execution to branch immediately to a

program label instruction somewhere else in the program.

 GOTO label [IF condition] :

 IF condition Goto label

label is an integer entered at the beginning of a line of program code. label is not the same as

the program step numbers: Step numbers are assigned by the system; labels are entered by the

programmer as the opening to a line of code.

For simple condition, Goto can be used together with if clause

2) CALL

 CALL subroutine

CALL instructions are used to implement subroutine calls. The CALL instruction causes

program execution to be suspended and execution of a new program to begin. When the new

program has completed execution, execution of the original program will resume at the

instruction after the CALL. The subroutine name used in CALL is a program name. It is required to

make another program to use as an argument of CALL instruction.

100 MoveJ #ptmp

IF Sig(1001) Then

Goto 100 ; Label 100으로 분기

END

IF Sig(1001) Goto 100

Goto 100 IF n > 3

CL Programming Manual

16

3) Signal Interrupt

 Interrupt Signal#, InterruptHandler, [Motion Stop = TRUE]

CL provides a interrupt handler. A program can be interrupted based on a state transition of

a digital input signal. When the watching signal is changed, the robot motion can be stopped

immediately or finish by option parameter.

4) Return, Stop, Pause

 RETURN : The execution of current program is ended and return to the caller

subroutine if the current program is called by it.

 STOP : The execution of the current program cycle is terminated and the next

execution cycle resumes at the first step of the program.

 Pause : The execution of the current program is paused and the robot changed to

hold state. The execution can be resumed by run operation.

; Prog1

MoveJ #pdrop

; Prog2

MoveJ #ppick

SetDO hand2

; Prog3

If Sig(1001) then

 Call Prog1

Else

 Call Prog2

 End

; Prog1

MoveJ #pdrop

SetDO hand1

Interrupt 1002, Prog2 ; If the digital input signal 1002 is changed to

On,the Prog2 will be executed after stopping.

; Prog2 Interrupt Handler

MoveJ #ppick

SetDO hand2

CL Programming Manual

17

In this example, ProgMain is a main program executed at first. In this program the subroutine

Prog1 and Prog2 is selectively called by the input signal 1001. If the Prog2 is called, the program

goes to the first step of ProgMain due to the Stop instruction.

5) Wait

 WAIT condition, [Timeout], [Result]

WAIT suspends program execution until a condition (or conditions) becomes true. If the

optional argument, timeout is set, the wait is ended even though the condition does not meet.

You can distinguish the result of actual condition checking the result argument. If the result is

; ProgMain

 If Sig(1001) then

 Call Prog1

 Else

 Call Prog2

End

; Prog1

MoveJ #pdrop

SetDO hand1

IF condition1 == 1 Then

Call Prog2

 Else

IF condition2 Then

 RETURN ; returns to the caller program

END

END

Pause ; Robot motion is stopped and the program can be resumed by user

operation.

; Prog2

MoveJ #ppick

SetDO hand2

Stop ; All remained program instructions are canceled and goes to the first

step of MainProg.

CL Programming Manual

18

TRUE, it means that the wait condition is TRUE.

SIG(1001, -1003) : The AND operation is applied to the conditions of two signals. If the OR

condition is needed, the statement can be written like this. Wait Sig(1001) OR Sig(-1003)

Other various conditions as well as the signal condition can be used.

 WaitTime duration_second

Suspend the program execution during the given time. The unit of time is second.

6) IF .. THEN .. ELSE .. END

The basic conditional instruction is the IF...THEN...ELSE clause. This instruction has two forms:

IF expression THEN

code block (executed when expression is true)

END

Wait Sig(1001)

; Wait forever until the digital input signal 1001 is on

Wait Sig(-1001, 1002), 2, result

; Wait for 2 seconds if two digital input signal does not meet. Or, ends the

instructions immediately if signal 1001 is off and 1002 is on. The result of condition

is assigned to result variable.

If result then ;

 TPWrite ICONI, “Job succedded”

Else

 TPWrite ICONI, “Timeout”

Wait Timer(1) > 100

Wait n > 100

val = 2.5

WaitTime 0.5

WaitTime val

CL Programming Manual

19

IF expression THEN

code block (executed when expression is true)

ELSE

code block (executed when expression is false)

END

Expression is any well-formed boolean expression.

7) Looping structures : While … Do, Do … Until, For

CL provides most commonly used looing structure instructions. These instructions allow you to

execute blocks of code a variable number of times.

 Do … Until condition :

DO...UNTIL is a looping structure that will execute a given block of code an

indeterminate number of times. Termination of the loop depends on the Boolean

expression or variable that controls the loop becoming true. The boolean is tested after

If n > 5 THEN

sp = 50

ELSE

sp = 70

END

IF m THEN

 IF n THEN

 ELSE

 END

ELSE

 IF n2 THEN

 ELSE

 IF n2 THEN

 END

 END

END

CL Programming Manual

20

each execution of the code block—if the expression evaluates to true, the loop is not

executed again. Since the expression is not evaluated until after the code block has been

executed, the code block will always execute at least once

 While condition Do :

WHILE...DO is a looping structure similar to DO...UNTIL except the boolean expression is

evaluated at the beginning of the loop instead of at the end. This means that if the

condition indicated by the expression is true when the WHILE...DO instruction is

encountered, the code within the loop will not be executed at all.

 FOR loop_variable = initial TO last [STEP increment] : Default STEP increment is 1

A FOR instruction creates an execution loop that will execute a given block of code a

specified number of times.

8) SWITCH … CASE DEFAULT END

The SWITCH structure will allow a program to take one of many different actions based on the

value of a variable. The variable used must be a real or an integer.

The form of the SWITCH structure is:

While TRUE Do

MoveJ #p1

Goto 200 IF condition

END

200 TPWrite 2, “While ended”

Max.row = 5

Max.col = 5

FOR row = 1 TO max.row

 POINT hole = Translate(start.position, (row-1)*100, 0, 0)

 FOR col = 1 TO max.col

 CALL pick.place ; update next position

 POINT hole = Translate(hole, 0, 100, 0)

 END

END

CL Programming Manual

21

SWITCH numeric_value

CASE case_value11, case_value12, … :

 Instructions

CASE case_value21, case_value22, …:

 Instructions

DEFAULT:

END

Point #p1 = Joint(0)

Point #p22 = Joint(10)

Point #p3 = Joint(20)

Point #p4 = Joint(30)

Point #p5 = Joint(40)

MoveJ #p1

FOR i = 0 TO 4

TPWrite 2,"Case : %d ",i

SWITCH i

CASE 0,1 :

MoveJ #p22

CASE 2 :

MoveJ #p4

default:

MoveJ #p5

END

END

CL Programming Manual

22

7. Functions

Functions generally requires you to provide them with data, and they return a value based on a

specific operation on that data. If no argument requires, the parenthesis is omitted. Functions can

be used in these cases.

Variable assignment:

 Var_root = Sqrt(x)

Inside expresstion:

 If len($my_str) > 12 Then

Arguments to a function:

 Point #p1 = Trans(Sqrt(x), Sqrt(y))

Function Argument Explanation

Abs Number x Returns an absolute value

A = Abs(-3.5)  A = 3.5

AOut Number channel Returns an analog output

A = AOut(2)  Analog output value of channel 2

AIn Number channel Returns an analog input.

A = AIn(2)  Analog input value of channel 2

Atan2 Number Y Arc tangent y/x as degree

A = Atan(1, 1)  A = 45 Number X

Asc String s Returns ASCII value of indexed character of string

 A = Asc(“sport”, 2)  the second character ‘p’ [Number index = 1]

Bits Number start_signal Continuous value of signals

1007 = on, 1006 = on, 1005 = off, 1004 =on

A = Bits(1004, 4)  1101(B) 13

Number count

Cos Number X Cos , X is degree

A = Cos(90)  A = 0

CvtTrans Point #joint Convert joint location to trans location

Point ptrans = CvtTrans(#pjoint)

Dest/#Dest Target location of current motion instruction

Point pold = Dest / Point #pold2 = #Dest

Distance Position A Distance from A to B

CL Programming Manual

23

Position B A = Distance(p1, p2)

DX, DY, DZ Trans p Gets the component of X,Y,Z

Xval = DX(pt1), Yval = DY(pt1), Zval = DZ(pt1);

Frame Position porg Calculate the coordinate frame

Point newcoord = Frame(porg, px, pxy, pz) Position px

Position pxy

Position pz

Here/#Here Returns current location

Point pcur = Here

Point #pcur_j = #Here

#Joint Number j1 Create joint location

Point #pjnt = Joint(0, -20, 10)

The default argument is 0

Point #porg = Joint(0)  Every joint location is 0

Number j2

…

Len String s Length of string

A = Len(“sport”)  A = 5

$Mid String s Gets the middle ranges of string

$A = $Mid(“sport”, 2, 3)  A = “por” Number index

Number count

Random Random number is generated. The range is 0 to 1

A = Random

Round Number x Round of X

A = Round(3.5)  A = 4

Rx, Ry, Rz Number x Gets the rotational transform.

Point trx = Rx(30)  Rotate 30degree with x Axis

Sig Number sig1 And operation of the given signals

1002 = on, 1003 = off

A = Sig(1002, 1003)  A = 0(FALSE)

1002 = on, 1003 = on

A = Sig(1002, 1003)  A = -1(TRUE)

Number sig2

Number …

Sin Number x Sine

A = Sin(90)  A = 1

Sqrt Number x Square root

A = Sqrt(4)  A = 2

Timer Number id Returns elapsed time

A = Timer(1)  The current time value of Timer 1

CL Programming Manual

24

#TouchJoint

TouchTrans

Number index Gets the touch probed location

Point #A = #TouchJoint(1)

Translate Position p Translate the trans location

Point A = Translate (P, 10, 2)  A is the translated

location of P

Number dx

Number dy

Number dz

Trans

Number x Create the trans location data or variable.

Point p = Trans(0, -20, 10, 20, 20, 10)

Number y

Number z

Number A

Number B

Number C

Value String s Convert string to numeric

A = Value(“12”)  A = 12

CL Programming Manual

25

8. Instructions

Instructions have a different syntax from functions. They have no return value and no parenthesis

to list the arguments. Some instructions must pass the variable argument to get a result from

inside execution. CL provides the robot motion command, IO settings and waiting, and

communications command as the instructions. For the details of each instruction, refer to the

reference parts of the manual

1) Transform & Position

Before going on the motion control instructions, the concepts of transformation and its

operation are figured out. CL’s trans location variable is a homogeneous transformation as it

mentioned before. The most important operation on the homogeneous transform is matrix

multiplication as it means added location shift or rotation. CL provides the forward transformation

and inverse transformation as a operator + and -.

Trans variable operations: + / -

Trans location variable is the homogeneous transform matrix. Internally it is 4 by 4 matrix,

but displays as (X, Y, Z, A, B, C). (A, B, C) are Euler angle representing a rotational part.

Therefore, the operator + means the matrix multiplication and – operator means the

matrix multiplication with inversed matrix. For example, trans location variables Pa, Pb

are given, two operations are as follows.

Pc = Pa + Pb  Pc = Matrix Pa * Matrix Pb

Pc = Pa – Pb  Pc = Matrix Pa * Matrix Pb^-1

CL Programming Manual

26

Figure 3 The operations of location variables

To modify the location variable use Point loc_var1 = loc_var2 for trans location variable

or Point #pj1 = #pj2 for joint location variable. For the assigment operations, the joint

location variable cannot be assigned to the trans variable. To get the trans location

variable from the joint variable, use the CvtTrans function

 DECOMPOSE x[0] = part

 DECOMPOSE angle[4] = #pick

 DECOMPOSE gets the each component of location variable as an array. For the trans

location variable, X, Y, Z, A, B, C value of trans location variable copied to array element.

For the joint location variable, each joint value is copied.

Point #location2 = #Here ; Save the current location to a location variable

POINT location1 = location2 ; Assignment

POINT #place = #post

POINT pick = corner + pick ; Add operation

CL Programming Manual

27

 TOOL tfname

 BASE tfname

The current tool coordinate and base coordinate is changed with TOOL and Base

instructions. 현재 작업용 Tool and Base frame is the same type as the trans location

variable. You can set the tool and base frame with various methods in coreCon menu

function.

2) Robot Motion

 MoveJ location → Joint interpolation motion. Abbreviation : MJ

 MoveL location → Straight line interpolation motion. Abbreviation : ML

 MoveC location1, location2 → Circular interpolation motion. Abbreviation : MC

 MoveX location, signal_no → Abbreviation : MX

Figure 4 Robot Motion Instrunctions

With CL, a motion instruction such as “MoveJ #p1” is interpreted to mean start moving

the robot to location ‘#p1’. As soon as the robot starts moving to the specified

destination, the CL program continues without waiting for the robot motion to complete.

The instruction sequence:

Point #p1 = Joint(100, 0, 10, 5)

DECOMOSE x[0] = #p1

x[0] = 100

x[1] = 0

x[2] = 10

x[3] = 5

CL Programming Manual

28

MoveJ #p1

SetDO 1

MoveJ #p2

SetDO 2

will cause external output signal #1 to be turned on immediately after the robot begins

moving to #p1, rather than waiting for it to arrive at the location. When the second

MoveJ instruction is encountered, CL waits until the motion to #p1 is completed. External

output signal #2 is turned on just after the motion to #p.2 begins.

 Delay time

 Stable time

Delay and Stable are motion instruction. Delay and stable instructions after move

instructions will wait the end of move motion. Delay just wait after previous motion,

while the Stable continue to command target location for the given time. It helps the

stabilization of robot motion and increase of accuracy. The non-motion instructions after

delay and stable will be executed immediately like Move instructions.

 ApproJ location, dist:

 ApproL location, dist :

 DepartJ dist

 DepartL dist

In many cases you will want to approach a location from distance offset along the tool Z

axis or depart from a location along the tool Z axis before moving to the next location.

With approach instructions you can move the robot to the suitable location offset along

the tool Z axis.

CL Programming Manual

29

.

Figure 5 Appro Instructions

After approach and move to the target location, you can go back to the offset location

with depart instruction

 HOME

 HOME2

 Two locations can be registered as a home position. To go to the pre-defined location,

simply use this instruction. The interpolation mode is joint.

 ALIGN :

Align the robot tool Z axis with the nearest world axis.

 Additional Move Arguments : MoveJ p1, [bundle signal no], [speed]

Every motion instructions can have additional arguments. They are well conditioned

digital output options and speed parameters.

 Bundle signal no : The output signal timing can be controlled while robot is

moving. The conditions are registered as table. This table index is used signal

parameters.

CL Programming Manual

30

 Speed : Every motion instructions have speed parameters. If speed parameter is

only required, you can ignore bundle signal as passing 0 or -1.

 IncJ : Incremental joint move.

- IncJ delta_joint1, delta_joint2, …

 IncL : Incremental linear Move

- IncL delta_x, delta_y, delta_z …

 IncT : Incremental Move w.r.t the Tool Axis

- IncT delta_tx, delta_ty, …

 Drive : The individual joint is moved

- Drive axis_num, delta

3) Motion Modifiers

 Robot configuration : These instructions specify the robot configuration. Robot can

have multiple postures for the same trans location. Some robots may have no

meaningful due to their restricted working range or under constrained kinematics.

For instance, SCARA robot have only Lefty/Righty and Cartesian robots have no

configurations.

 ABOVE

 BELOW

 LEFTY

 RIGHTY

 UWRIST

 DWRIST

 SINGLE

 DOUBLE

 Motion Setting : These instructions specify the robot dynamic properties, such as

speed and acceleration.

Drive joint#, value

IncJ -20, 30

IncL 200, 100, 50

IncT 20, 10, -10

CL Programming Manual

31

 Speed speed [Fixed] :

- Determine the speed of robot. If Fixed argument is attached, every motion

instructions have this speed. If not used, only the speed of next motion

instruction is changed.

 Accuracy range [Fixed]

- In case robot moves p1P2P3 continuously, the robot begins moving

toward p2 from p1 by accelerating and it does not decelerate on moving

toward p3. Instead, it will smoothly change its direction and begin moving

toward P3. It can be defined how smoothly the robot moves at the corner

P2.

Figure 6 A continuous motion with accuracy

MoveJ #p1 ; Maximum speed 100%

Speed 20 ; Next motion speed will be 20% of Maximum.

MoveJ #p2 ; 20% Speed

MoveJ #p3 ; 100% Speed again.

MoveJ #p1 ; Maximum speed 100%

Speed 20 Fixed ; For all next motions speed will be 20% of maximum.

MoveJ #p2 ; 20% speed

MoveJ #p3 ; 20% speed, too.

Speed 20 mm/s ; Absolute speed setting , Speed is 20 mm/sec

CL Programming Manual

32

 Accel / Decel accelration% [Fixed]

- The heavy load on the robot causes the unstable motion. This kind of

problem can be solved by reducing the acceleration. The maximum

acceleration is specified in the robot configurations. The acceleration value

is percentage of the maximum acceleration. The range of acceleration is

from 0.01% to 100%

 Break : Robot wait until it reaches the exact target positions. It breaks

continuous path motion.

As shown above example, if the break instruction is inserted between p2 and p3, MoveL p3

does not start until the robot reaches p2. It breaks the continuous motion.

Accel 50 : 50% of Maximum acceleration. Applied to the only next motion.

Accel 50 Fixed : Changed for all remained motion

;prog1

MoveL p1

MoveL p2 ;

SetDO 1 ; Signal out immediately beginning motion toward P2

MoveL p3

;prog2

MoveL p1

MoveL p2 ;

Break

SetDO 1 ; Signal out after reaching the target P2

MoveL p3

CL Programming Manual

33

Figure 7 Path changes due to Break instruction

 Brake : This instruction stops the robot motion and then resume the motion to

the next.

4) I/O

 Reset : Reset all digital out signal. All out signal get to off.

 SetDO digital_output_signal_#, … : Setting the digital output signal

 SetDO -sigval, 4 : Signal defined by sigval variable is OFF, Signal 4 is ON

 The negative value turns off the signal and the positive one turns it on.

 PulseDO signal#, time : Pulse output signal. The signal is on during the given time.

 DelayDO signal#, time : Delay outut signal. The signal is on after the given time.

 RunMask startsignal#, count : Masking the signals. From start signal number to the

amount of count, the signal will reset when the program stops execution. The default

action preserves the signal state even though the program execution is terminated.

 Bits start, count = value : The signal is set as a combined value.

 Bits 1,8 = 255 : The 8 port signal changes together like a integer variable.

 WaitSig signal#, ... : Wait until the signal conditions meet.

 BsCondition index, type, start, end : Define the bundle signal.

 index : Bundle index. The range from 1 to 100.

 type : Signal condition type

- 1 : Time, The value of start, end is second.

- 2 : Distance, The value of start, end is distance.

 start : Departure condition. Ignore this condition for the negative value

 end : Arrival condition. Ignore this condition for the negative value.

 BsDO index, do1, do2, ... : Specify the digital output signal list for the given bundle

condition

Following figure shows the timing chart for SetDO, DelayDO, PulseDO instructions

moving toward pt2

CL Programming Manual

34

You can define the complex condition by BsCondition, BsDo, such as before arriving

pt2 ahead 5mm or 0.5sec

5) Touch Probe

EtherCAT servo driver provides special monitoring functions as touch probe. It detect the signal

change and save the encoder position as fast as the driver can. For the details in its function,

please refer to the ECAT driver manual.

CL provides the instructions to use touch probe function seamlessly.

 TouchEnable :

 TouchEnable 1 : Enable the touch function.

 TouchStart watch_axis, signal_edge

 watch_axis : Specify the axis list to monitor. To watch 1, 3 axes, set 5. LSB means

Axis 1

 signal_edge : Specify rising edge(1) or falling edge(0)

 TouchStop

 TouchWait : Wait until the touch point is detected.

 Functions getting touch poin

 Point #p1 = #TouchJoint(1) ; touched point at the rising edge as a joint location.

 Point pt1 = TouchTrans(1) : touched point at the rising edge as a trans location.

 Point #p2 = #TouchJoint(-1) : touched point at the falling edge as a joint

location.

 Point pt2 = TouchTrans(-1) : touched point at the falling edge as a trans

CL Programming Manual

35

location.

6) Network

CL provides the TCP/IP network instructions. It is similar to the standard socket

programming. CL has two different modes on the network instructions. You have to

choose the right mode if your application works as client or server.

 Client Mode

 TCPConnect sockets variable, IP address as string, port_number

 TCPClose socket variable

 TCPRead socket variable, string variable, [return code]

 TCPWrite socket variable, string_variable, [return code]

Read and Write instruction may have a return code optionally. You can examine

the return code and process the appropriate actions. In special case when

TCPRead returns 0, it means the server went down.

 Server Mode

 TCPSStart socket_variable, port number

- If socket variable is negative, the error has occurred.

 TCPSStop socket_variable

 TCPSAccept soket_variable client_socket_variable

 TCPSCClose socket_variable : close client

 TCPSRead client_socket, string variable, [return code]

 TCPSWrite client_socket, string variable, [return code]

In example section of this manual, the vision interface application shows how to use

network instructions. As the communicated data type is string, it is necessary to change

to a right data type , such as numeric. Before converting to numeric, the received string

must split as a token list. SplitStr instructions make the string to split as the tokens. Then,

each token can be converted to numeric with Value instruction.

CL Programming Manual

36

<SplitStr instruction example>

7) Conveyor Tracking

The details about conveyor tracking programming are shown in the conveyor tracking

manual. This section introduces the instructions that CL provides for the conveyor

tracking.

 TkSetSig cvid, trigger signal #

Setup trigger signal to add object into the object queue

This can be defined in the Conveyor Settings UI. It may not need in the program.

 TkObjWait cvid, [timeout], [result]

Wait until the object comes in the range of working.

 TkMove cvid, pt :

Moves linear interpolated motion tracking the conveyor

 TkAppro cvid, dist :

“%-2.1,15.4,95” is converted to tx = -2.1, ty = 15.4, trot = 95 as follows.

 $msgread = “%-2.1,15.4,95” ; received string data

SplitStr $token[0], $msgread, “%,” ; split string

; ‘%’, ‘,’ are separator characters to split string

; The result will be $token[0] = “-2.1”, $token[1] = “15.4”, $token[2] = “95”

 Tx = Value($token[0]) ; convert to numeric

Ty = Value($token[1])

Trot = Value($token[2]

CL Programming Manual

37

Moves the distance along the toolz direction from previous motion target location

 TkDepart cvid, dist :

Moves the reverse direction along the toolz from current location.

 TkMoveC cvid, p1, p2 :

Circular interpolated motion synchronized the conveyor. It looks like an elliptic shape

from the view of the outside.

 TkStop cvid :

Stops the conveyor tracking.

 TkObjGet cvid, tx, ty, trot :

마지막에 삽입된 object 의 정보를 얻어 냅니다.

 TkObjShift cvid, tx, ty, [trot=0] [tz=0] :

Sets the shift information for the last queued object. Normally the shift information is

transferred form the vision system. The third argument is rotation information not z

translation because it is rarely used.

 TkObjRemove cvid :

Removes the last queued object

 TkObjClone cvid, [result]

The last queued object is copied and queued. It has the same conveyor position, but no

shift information.

Result == TRUE is success in cloning.

 TkObjFilterEnv cvid, enable_flag, check_radious, search_count

CL Programming Manual

38

Sets the object filter

Check_radius is distance criteria determining the same object

Search count is the number of existing objects to test filtering.

 TkObjFilter cvid

Do a filter test for the last queued object. If the object is the same object to the existing

objects, it removes from the object queue.

 Nobj = TkObjCount(cvid)

Returns the number of objects. With this functions you can also decide the object existence

CL Programming Manual

39

 <Conveyor Tracking Example : MainTask >

; move home position

dist = 70 ; approach distance

convid = 1 ; conveyor id

Accuracy 50 Fixed ;

Point phome = Trans(20,0,680)

Point pdrop = Trans(190,0,675)

Point ppick = Trans(0) ; Origin location w.r.t the object coordinate

MoveL phome ; Move to wait position

TkObjWait convid ; Wait until object is valid

; catch target - ppick is relative w.r.t the conveyor reference

TkMove convid,ppick

TkAppro convid,dist ; Move to the direction tool-z from ppick

Signal 1,2 ;

TkDepart convid,dist ;

Break ; Break the continous path motion

MoveL pdrop ; Move to drop position

Signal -1,-2

 Alternatives instead of TkAppro/TkDepart

 Point ppick2 = Translate(ppick, 0, 0, 70)

 TkMove cnvid, ppick2

 TkMove cnvid, ppick

 If you run this program, the robot move the default target location

whenever a trigger signal is received. To identify the actual location with a

vision system, the next example can be used together.

 When resuming the program after stop the middle of the program, it

may be required to be Reset and resume at the beginning of the

program because it may loose the tracking object information.

CL Programming Manual

40

<Vision interface example: SubTask >

cognex = 0

server = 0

count = 0

vis_ret = 0

; open new socket

TCPSStart server,3240

TCPSAccept server,cognex

WHILE TRUE DO

$msgread = ""

TCPSRead cognex,$msgread,vis_ret

IF vis_ret == 0 THEN

TPWrite 2,"Vision disconnected",0

GOTO 100

END

SplitStr $token[0],$msgread,"%, " ; Vision sends dx, dy like this: “%8.3,-2.5”

; apply transform

tx = Value($token[0])

ty = Value($token[1])

TkObjShift 1,tx,ty,0

END ; end of while

100 TCPSStop server

 In this example, the vision sends only one object deviation by the trigger

signal. If you have multiple object, you need more additional instructions such s

Filter , Clon

 On stopping in the middle of the program, reset and resume program is

required because TCP connection is lost.

 Only to test the communication with the vision system, you can check the

result using TPWrite instruction

TCPSRead cognex, $msgread, vis_ret

TPWrite 2, “Vision : %s”, $msgread

 In real situation, the diagnostic message consumes the CPU and the

system performance can be degraded. Therefore it may be used for only test the

system.

CL Programming Manual

41

CL Programming Manual

42

8) ETC

 ULIMIT axis1, axis2, …

 LLIMIT axis1, axis2, …

The upper limit and lower limit are defined programmatically.

 TIMER

 CL has timer to measure the elapsed time. You may measure the application cycle time.

 SetTimer timer#, time : Set timer value as seconds

 Timer(timer#) : Read elapsed time

9) User coordinate instructions

If a custom robot does not have the Cartesian coordinate but the special coordinate

called a user coordinate, the linear interpolated motion with respect to the user

coordinate is provided in CL. For the multi-hand TCP the undetermined motion can be

resolved by setting master slave relationships.

 UCMove #ptarget : Linear interpolated motion on User coordinate

 UCMasterArm arm1, [arm2], [arm3], [arm4] : Specify the master slave order

 If the user coordinates have two XYZ sets by 2 Arms. The arm motion is

calculated first set as a master arm, ant the other’s follows the first.

 UCHint $hint_name, value : Sets the options for Custom ARM. It can be any types of

parameter value set.

SetTimer 1, 0

MoveJ #p1

SetDO 1, -2

Cycletime = Timer(1)

TPWrite ICONI, “Cycle time = %f”, cycletime

CL Programming Manual

43

9. Diagnostic Instructions

 TPWrite icon, str_format, [arg1], [arg2], [arg3], …, [arg10] :

Print the message on the message window. The format of string is the same as the c

standard function, printf. But, the number of argument can be up to 10. The level of

message is specified by icon as well as displaying icon. For error icon the message is

also saved to system log.

 icon = 0 : error 1 : warning, 2 : information

 CL has predefined constant for icon. ICONE = 0, ICONW = 1, ICONI = 2

- TPWrite ICONI, “message”

 TPClear :

Clear the message out area.

 RaiseError user_erro_code

When the system error occurred, it displays in the message area and is saved to log.

Sometimes the robot program stops due to the error. CL provides how to define this

kind of error behavior as a user defined error. Application programmer defines the

application specific error code and raises it in programs.

The error is raised, the robot stops and the message is logged.

User error code can be used from -9000 to -10000

 cycle = cycle + 1

 TPWrite 2, “program cycle = %d”, cycle

CL Programming Manual

44

10. Program selection with an external i/o

Process controller such as PLC selects the robot program with digital io signal. It can be

accomplished using IO instructions of CL. And, CL provides simpler method to implement it.

CL maps the ranges of the digital input to numbered program and chooses the program

following the signal values.

To select program externally, EPSMode must be enabled and the program is selected at EPSWait

instruction.

Instructions :

 EPSmode On or EPSmode Off

 Enable or disable the external program selection mode 결정합니다.

 EPSWait

 Wait signal and jumps selected program

To use EPS the 6 dedicated signals must be defined. It is defined on the robot configuration file.

Config Example)

Output;

DDCO_EPS_MODE ex) DDCO_EPS_MODE = 10, 1

DDCO_EPS_STATUS ex) DDCO_EPS_STATUS = 11, 1

Input :

DDCI_EPS_ON ex) EPS_ON = 1007, 1

DDCI_EPS_OFF ex) EPS_OFF = 1008, 1

DDCI_EPS_START_BIT ex) DDCI_EPS_START_BIT = 1009

DDCI_EPS_END_BIT ex) DDCI_EPS_END_BIT = 1012

- In the example, the program number is defined with 4 bit range, 1009~

1012. Therefore program name can be Pg1, Pg2, .. Pg9, Pg10, Pg11, Pg12,

Pg13, Pg14, Pg15

EPS_START_BIT ~ EPS_END_BIT: IO bits to define program

In case of value 1 ~ 9 : The name of program must be Pg1 ~ Pg9

In case of value 10 ~ 99 : The name of program must be Pg10 ~ Pg99

In another case, 100 ~ 999: The name of program must be Pg100 ~ Pg999

When EPSMode is ON, and runs EPSWait, the EPS_STATUS becomes ON. , The PLC checks the

CL Programming Manual

45

EPS_STATUS and selects the program. After selecting a program PLC makes the robot runs the

program with EPS_ON or cancels the progam EPS_OFF.

1) Example : Program selection with EPS MODE

 EPS main program : EPSGO

 Program name : Pg1

 Program name: Pg2

- Set the signal 1012 = off, 1011 = off, 1010 = off, 1009 = on

- EPS_ON is on, then Pg1 runs

- Set the signal 1012 = off, 1011 = off, 1010 = on, 1009 = off

- EPS_ON is on, then Pg2 runs

2) Program selection with Bits instruction and SWITCH CASE structure

The same program selection can be accomplished Bits instruction and Switch Case

structures.

HOME

EPSMode ON

EPSWait

MoveJ #p1

MoveJ #p2

MoveJ #p3

MoveJ #p4

WaitSig 1007

Callprog = Bits(1009,4)

SWITCH callprog

CASE 1

Call myprog1

CASE 2

Call myprog2

CL Programming Manual

46

CL Programming Manual

47

11. Example programs

1) Basic motion program

#p0 : A teaching location .

Offset : Predefined or programmed numeric variable

Robot moves #p0  pt1  pt2  pt3  pt4  pt0

MoveJ #p0 ;

Offset = 100 ; offset distance

Point pt0 = CvtTrans(#p0) ; Convert Joint location to Trans location

Point pt1 = Translate(pt0, offset, 0, 0) ; Define corner location using Translate

Point pt2 = Translate(pt1, 0, offset, 0)

Point pt3 = Translate(pt2, -2*offset, 0)

Point pt4 = Translate(pt3, 0, -offset, 0)

MoveJ #pt0

MoveL pt1

MoveL pt2

MoveL pt3

MoveL pt4

CL Programming Manual

48

MoveL pt0

2) CP Motion

By increasing the accuracy at Pt2, the motion at the corner becomes more continuous. If

the load is heavy, it helps more stable motion by decreasing the acceleration.

MoveJ #p0.

Offset = 100

Point pt0 = CvtTrans(#p0)

Point pt1 = Translate(pt0, offset, 0, 0)

Point pt2 = Translate(pt1, 0, offset, 0)

Point pt3 = Translate(pt2, -2*offset, 0)

Point pt4 = Translate(pt3, 0, -offset, 0)

MoveJ #pt0

MoveL pt1

Accuracy 50

Accel 50

Decel 50

MoveL pt2 ; Accuracy/Accel/Decel affects only to move pt2

MoveL pt3 ; The motion settings is recovered on moving pt3

MoveL pt4

MoveL pt0

 To change the settings permanently, use like this : Accuracy 50 Fixed, Accel 50 Fixed,

Decel 50 Fixed. The motion parameters are fixed, they are effective for remained

motion instructions.

3) IO Instructions

CL Programming Manual

49

This examples shows how to use Digital Input and Digital output signal.

MoveJ #p0

Offset = 100

Point pt0 = CvtTrans(#p0)

Point pt1 = Translate(pt0, offset, 0, 0)

Point pt2 = Translate(pt1, 0, offset, 0)

Point pt3 = Translate(pt2, -2*offset, 0)

Point pt4 = Translate(pt3, 0, -offset, 0)

MoveJ #pt0

WaitSig 1002 ; Wait until Digital Input 1002 is on

MoveL pt1

Accuracy 50

Accel 50

Decel 50

MoveL pt2

SetDO 3, 5 ; Digital output signal is On on departing to pt3.

MoveL pt3

SetDO -3, -5 ; Output signal is off

MoveL pt4

MoveL pt0

 Delayed output or Pulse output is needed, use the instruction, DelayDO or PulseDO.

 With Bundle IO, the output timing can be controlled during a motion.

4) MoveC

CL Programming Manual

50

This example shows how to move robot following a circular path. To define a circular

movement, two locations must be defined.

MoveJ #p0

Offset = 100

Point pt0 = CvtTrans(#p0)

Point pt1 = Translate(pt0, offset, 0, 0)

Point pt2 = Translate(pt1, 0, offset, 0)

Point pt3 = Translate(pt2, -2*offset, 0)

Point pt4 = Translate(pt3, 0, -offset, 0)

Point pt5 = Translate(pt0, 0, offset, 0)

MoveJ #pt0

MoveL pt1

MoveC pt5, pt4 ; Two locations are required.

MoveL pt0

5) Conveyor Tracking and Pickup

The order of robot movement is like the figures, but the robot does not move to the

wait location when multiple workpieces exist on the conveyor to reduce cycle time.

CL Programming Manual

51

No waiting other workpiece: move 12345

Multiple workpieces exist : Robot skips going to 5 and goes to the next workpiece

directly.

dist = 50

convid = 1

Point phome = Trans(0,0,480)

Point pdrop = Trans(200,-200,480)

Point pdrop2 = Translate(pdrop,0,0,dist)

 Point ppick = Trans(0)+Rz(-90)

 Accuracy 100 Fixed

100 MoveL phome

CL Programming Manual

52

 wait_result = FALSE

200 Break

 TkObjWait convid,1,wait_result

 IF wait_result == FALSE THEN

 GOTO 100 ; No workpiece, goes to waiting location.

 END

 Accuracy 5 Fixed

 TkMove convid,ppick

 Accuracy 0.5

 TkAppro convid,dist

 TkDepart convid,dist

 MoveL pdrop

 Accuracy 0.5

 MoveL pdrop2

 MoveL pdrop

;

 objcount = TkObjCount(convid)

 IF objcount>0 THEN ; There exists object, goes to workpiece location.

 GOTO 200

 END

Break instruction is required in between the tracking motion and non-tracking motion

to distinguish them.

CL Programming Manual

53

CL Programming Manual

54

CL Programming Manual

55

CL Programming Manual

Copyright © 2016–2017 CoreRobot

All rights reserved.

Printed in the Republic Of Korea

#603, IT MIRAE Tower, 33, Digital-ro 9-gil,

Geumcheon-gu, Seoul, Republic Of Korea

CoreRobot Inc.

Web: www.core-robot.com

Tel: 82-2-2027-6565

Fax: 82-2-2027-6565

